Quality markers and performance characteristics for non-targeted testing methods

Eurachem 2022 – Quo Vadis pt. 1

Martin Alewijn - WFSR (Wageningen University and Research), the Netherlands

Non-targeted testing methods

- .. As just defined (Stephan Walch)
- Yields vast amounts of data
- · Data workflow may vary with application

This presentation: focus on (food) authentication methods

Method performance

Well-established for targeted analytical methods

But hard to translate for non-targeted testing methods...

- Many "analytes"
- Typically, no direct relation between analytes and the property measured
- Binary result
- Result based on reference sample set

AM0

(some) Performance characteristics

Conventional/targeted:

Accuracy
Precision
Linearity
Selectivity
Specificity
Application range
LOD
LOQ
Recovery
Robustness
Repeatability
Reproducibility
Measurement Uncertainty
CCα

ССВ

Classification:

Accuracy
Precision/positive predictive value
Recall/Sensitivity/True positive rate
Selectivity/Specificity/True neg. rate
False positive rate/Type I error
False negative rate/Type II error
F-1 Score (F-β score)
Likelihood ratio
Youden's index (J)
Kappa (Cohen/Fleish)
MCC (Matthews correlation coeff)
Kolmogorov-Smirnov statistic
Log-loss
Brier score
AUROC (AUC score)

Į,

Lack of established performance metrics

- Makes it hard to appraise methods or compare them
- Hinders (official) use
- Some are difficult to interpret, sensitive to dataset balancedness & non-normal behavior, discrete nature
- (No performance metrics for reference set quality?)
- Aim to develop a harmonized validation protocol for non-targeted testing methods in food authenticity testing in CEN TC/460 "Food authenticity"

CEN/TC 460/WG 5

Slide 5

https://neptune.ai/blog/evaluation-metrics-binary-classification Alewijn, Martin; 2022-11-08T20:18:17.632 AM0

Quality levels in non-targeted testing methods

3) Routine use quality (extrapolation)

Power to predict correct results

- using new (routine) samples extrapolation of reference set
- time after method development analytical & population

2) Developed model quality (optimisation)

Power to predict correct results:

- · based on reference samples
- using a mathematical model

1) Analytical quality

 Performance of the analytical method

1) Analytical quality metrics

- Conventional QC on \sqrt{n} (or selected) variables
- Apply conventional QC to raw model score:
 - r, R, long-term monitoring reference samples
 - Quantify replicate suitability
 - (may not always follow a normal distribution)
- Alternatively, use n PCA scores or mahalanobis distances
 - Use appropriate scaling
 - Excludes model's variable weight

2) Developed model quality

- Accuracy? $(\frac{TP+TN}{TP+TN+FP+FN})$
- True negative rate at a predefined acceptable false negative rate For example:
- Accepting ≤0.1% false classification of authentic samples, the method correctly detects ≥80% of non-authentic samples
- How to obtain this information?

c

2) Developed model quality

During method development: rather a metric based on scores

- This mitigates the resolution problem:
- And allows parameter estimation...

False result rate	Confidence level	
	95 %	99 %
0.5 %	598	919
1 %	299	459
5 %	59	90

From: "R Bettencourt da Silva and S L R Ellison (eds.) Eurachem/CITAC Guide: Assessment of performance and uncertainty in qualitative chemical analysis. First Edition, Eurachem (2021)."

2) Developed model quality

- To check model quality, cross-validation is usually used.
 - Not really "validation"!
- Split dataset, use part of the data to build a model, predict left-outs
- Don't be nice: no leave-one-out. Use random splits or splits where groups of similar samples are left out together.
 - For model tuning, inner-loop CV could be used
- Check the performance based on all left-outs...

11

2) Model quality: AUROC and density plot Model score density plot* **ROC** curve True Positives True Negatives Decision boundary Area = 0.99True Positive Rate 0.6 0.7 0.4 Area (AUROC) = 0.9340.2 0.4 1.0 False Positive Rate probability score **False Negatives** False Positives, Area = 0.01Area = 0.02*Empirical probability estimates

Density plots

- Graphical representation of discriminating ability
- Shape diagnostic for subgrouping
- Allow extraction of performance characteristics
- Allows finding a suitable decision boundary to calculate accuracy

AUROC

- One number reflecting discriminating ability
- Based on raw/probability scores
- Insensitive to imbalanced-ness
- For model optimising/tuning
- Performance measure for sets (CV, validation, ...)

3) Routine use quality

- After design, method is fixed (data set and analytical workflow and data treatment procedures)
- New samples are always an extrapolation, use care!
- Finalise development with an independent validation set:
 - New samples (within scope)
 - New harvest/year/suppliers/technicians/devices (within scope)
- If possible: multi-lab trial
- ► Validation samples should meet requirements (AUROC, Spec, FNR, Acc)

3) Routine use quality

"unknown sample"
Propagate # 0.01

Two levels of performance statements can be extracted from "worst-case distribution":

- Global: on average, method gives ≥ x% TNR @ ≤ y% FNR
- Per sample: classification and a confidence statement:
 - Decision (yes/no, authentic/non-authentic)
 - ullet $p_{\mathsf{authentic}}$ and $p_{\mathsf{non-authentic}}$
- Maintenance: analytical model score stability reference sample(s)
- Maintenance: dataset adding new (QC) samples, update datasets

Discussion

- A few relatively easy to interpret performances metrics suggested
- Easy to obtain, but not from (all) commercial software
- Far from a real-life proven & accepted validation protocol
- More research, and discussion needed
- (A.o. in CEN TC460/WG5)

17

Thank you for your attention

martin.alewijn@wur.nl

