

Experimental validation of the evaluated measurement uncertainty

Anders Svaneborg
Prod. BU Manager
Department for Metals and Minerals
[Eurofins Environment, DK]

Skriv gärna Symboler med kursiv men subscript med vanlig Typ

S

1

Eurachem 🖔

Agenda

- Eurofins DK short presentation
- Method validation and initial evaluation of measurement uncertainty how we do
 - References and procedures
 - Initial evaluation of measurement uncertainty
- Experimental validation of evaluated measurement uncertainty how we do
 - References and procedures
 - Topdown approach
 - Contribution from random errors; within laboratory reproducibility, u(Rw)
 - Contribution from systematic errors; bias, u(bias)
 - Inclusion of contribution from other sources ?
 - Combining standard uncertainties
 - Calculating expanded uncertainty
 - Reporting expanded uncertainty

2

Eurofins DK – short presentation - Eurofins Environment - Eurofins Food/Feed - Eurofins Agro - Eurofins Product Testing - Eurofins Pharma - Eurofins Genomics

3

Eurachem &

Method validation and initial evaluation of measurement uncertainty - how we do

References and procedures

< 1100 employees in total

- Eurachem Guide, The Fitness for Purpose of Analytical Methods, A Laboratory Guide to Method Validation and Related Topics, Second edition
- Eurolab Danmark, Vejledning vedr. metodevalidering i kemisk analytiske laboratorier, 1. udgave
- Internal procedure (Eurofins Environment); 60 5404 Metodevalidering (Kemi)

Layout

- Low control; sample with relevant matrix and known content at LOQ level
- High control; sample with relevant matrix and known content in middle or high range
- at least 16 replicates for both samples, over 2 (or more) days
- calculations: LOD, LOQ, S_w, S_b, S_t, RSD%, bias, u_{bias}, u_c (combined standard uncertainty), U_{rel} (= expanded standard uncertainty, normal range), U_{abs} (= expanded standard uncertainty at LOQ level)

Eurachem ()

Method validation and initial evaluation of measurement uncertainty - how we do

Formulas

- LOD = 3 x S_w
- LOQ = 10 x S_w
- $u_{\text{bias}} = \sqrt{(\text{bias})^2 + \left(\frac{s_b}{\sqrt{n}}\right)^2 + (u_{\text{ref}})^2}$
- U_{rel} = $2x\sqrt{(u_{bias})^2 + (CV_t)^2}$
- $U_{abs} = 2x \sqrt{(u_{bias})^2 + (s_t)^2}$

Define symbols Sw sb si cvi

5

Experimental validation of evaluated measurement uncertainty – how we do

References

- EURACHEM / CITAC Guide CG 4, Quantifying Uncertainty in Analytical Measurement
- NORDTEST NT TR 537 edition 4 2017:11, Handbook for Calculation of Measurement Uncertainty in Environmental Laboratories

Procedures

- Topdown approach: Use data from Internal Quality control
 - Run in every sequence 2 low control and 2 high controls samples
 - Plot results in XR chart
 - The following parameters can all be calculated for any chosen period;
 - LOD, LOQ, S_w, S_b, S_t, RSD%,
 - bias, u_{bias}, u_c (combined standard uncertainty),
 - U_{rel} (= expanded standard uncertainty, normal range),
 - U_{abs} (= expanded standard uncertainty at LOQ level)
 - Compare bias for control samples with bias achieved in proficiency testings

6

Eurachem/CITAC Scientific Workshop -Measurement uncertainty evaluation based on inhouse validation data

Eurachem Calculations of uncertainty, high control

From control chart , Phosphorous, mixed feed for pigs

• recovery = $101.87 \% \rightarrow \text{bias} = 1.87 \%$ • $s_{\text{bias}} = 4.25 \%$ • n = 40• $u_{\text{ref}} = 0 \text{ (means } u_{\text{ref}} \text{ is not taken into account)}$ • $CV_t = 5.00 \%$ $\Rightarrow u_{\text{bias}} = \text{sqroot } (1.87^2 + (4.25/\text{sqroot}(40))^2 + 0^2)$ = 1.99 % $\Rightarrow U_{\text{rel}} = 2 \times \text{sqroot}(1.99^2 + 5.00^2)$ = 10.76 % $\approx 11 \%$

Eurachem 🗸

Is anything missing?

- Are control samples certified? or "just" inhouse control samples?
 If inhouse: "True" value might be wrong, and systemativ errors (bias) might be wrongly estimated (typically underestimated, but might also be overestimated)
- Are control samples more homogeneous than real customer samples?
 If yes: Random errors might be underestimated
- Does control samples undergo total analysis, including all sample preparation steps? If not, both random and systematic errors might be underestimated
- What about uncertainty arising from sampling in the field?
 According to ISO 17025 the lab shall include this. But national / local regulation can have other demands. E.g. Environmental monitoring in Denmark: Uncertainty arising from sampling in the field is not, and shall not be included

9

11

13

