

1

Introduction

- Many analyses are carried out to check compliance with a specification or regulation
- Necessary to take into account the measurement uncertainty when assessing compliance
- What do we need to know?
- What do we need to understand?

Basic use of limits Need additional information to deal Upper with case (iii) control limit (iii) (iv) Result Result Result Result Result above limit above limit at limit below limit below limit LGC

Eurachem e-Workshop July 2020

Consistent decisions need rules

ISO/IEC 17025:2017

Decision rule:

"rule that describes how measurement uncertainty is accounted for when stating conformity with a specified requirement"

• §7.1.3: "When the customer requests a statement of conformity...the decision rule shall be clearly defined."

Example of a decision rule

- A result equal to or above the upper limit implies noncompliance Upper Specification Limit
 - -result below the limit implies compliance

Specification zone Acceptance zone Rejection zone

"Simple acceptance"

- IF uncertainty is below a specified value
 - -e.g. uncertainty is small compared with the limit
- THEN the risk of making a wrong decision is acceptable

Limits

- Function (regulation, control...)
- Setting (how limits are decided)

Interpretation

- Comparison
- "Borderline" cases
- Measurement uncertainty
- Expanded uncertainty
- The idea of "decision rules"
 - Including action on borderline cases

5

9

- Function (regulation, control...)
- Setting (how limits are decided)

Interpretation

- Comparison
- "Borderline" cases
- Measurement uncertainty
- Expanded uncertainty
- The idea of "decision rules"

- Probability distributions
- · Uncertainty as a distribution
- Probability of compliance

12

Decision rules can control probabilities of false decisions

15

Concepts so far

- Function (regulation, control...)
- Setting (how limits are decided)

Interpretation

- Comparison
- "Borderline" cases
- Measurement uncertainty
- Expanded uncertainty
- The idea of "decision rules"

- Probability distributions
- · Uncertainty as a distribution
- Guard bands
 - and effect on false acceptance
- Probability of compliance

False acceptance and rejection rates – Consumer and producer risk

17

- Limits
 - Function (regulation, control...)
 - Setting (how limits are decided)
- Interpretation
 - Comparison
 - "Borderline" cases
 - Measurement uncertainty
 - Expanded uncertainty
 - The idea of "decision rules"

- Probability distributions
- Uncertainty as a distribution
- Guard bands
- Probability of compliance
- Producer & consumer risk

19

_--

- Function (regulation, control...)
- Setting (how limits are decided)

Interpretation

- Comparison
- "Borderline" cases
- Measurement uncertainty
- Expanded uncertainty
- The idea of "decision rules"

- Probability distributions
- Uncertainty as a distribution
- (Conditional) Probability of compliance
- Guard bands
- Producer & consumer risk
- The process distribution
- Test uncertainty ratio (TUR)

22

Calculating Consumer and Producer risk

23

27

A narrow process distribution delivers smaller risks of false acceptance

- Limits
 - Function (regulation, control...)
 - Setting (how limits are decided)
- Interpretation
 - Comparison
 - "Borderline" cases
 - Measurement uncertainty
 - Expanded uncertainty
 - The idea of "decision rules"

- Probability distributions
- · Uncertainty as a distribution
- Guard bands
- Probability of compliance
- Producer & consumer risk
- Specific risk
- The process distribution
- Test uncertainty ratio (TUR)
- Integration to obtain 'global' risks

29

Additional technical problems

Multiple observations in compliance assessment

- Replicate measurements on sampled items
- Repeated results for borderline or failed product
- Decision can be on an average, all results, or a proportion, within acceptable limits

Multivariate conformity assessment

- Products are subject to multiple requirements
- Measurements may be correlated

Non-normality

- Of process or uncertainty distributions

15

Non-normal processes

- Example*: Total suspended particulate matter in air near a quarry
 - 220 observations
 - Line shows lognormal distribution

* F. Pennecchi¹, F. Rolle¹, and A. Allard² 1 Istituto Nazionale di Ricerca Metrologica, Italy 2 Laboratoire National de Métrologie et d'Essais, Paris, France EURAMET Project EMUE, Example A.1.2.3

31

Concepts for conformity assessment with uncertainty

- Limits
 - Function (regulation, control...)
 - Setting (how limits are decided)
- Interpretation
 - Comparison
 - "Borderline" cases
 - Measurement uncertainty
 - Expanded uncertainty as an interval
 - The idea of "decision rules"
 - Using replicate or repeated results

Basic

- Probability distributions
- · Uncertainty as a distribution
- Guard bands
- Test uncertainty ratio (TUR)
- The process distribution

Useful

- Probability of compliance
- Producer & consumer risk
- Specific risk
- · Integration for 'global' risks
- Non-normality
- Multivariate conformity

Advanced LCC

32

Summary

- Conformity assessment with measurement uncertainty can be a complex topic
- A basic understanding of limits, decision rules and measurement uncertainty (as an interval) is essential
- A comprehensive understanding is likely to require extended statistical training or qualifications

33

Further reading

- Use of uncertainty information in compliance assessment (Eurachem/CITAC Guide)
 - -www.eurachem.org
- ILAC G8: Guidelines on Decision Rules and Statements of Conformity
 - ilac.org/publications-and-resources/ilac-guidance-series/
- JCGM 106:2012 Evaluation of measurement data The role of measurement uncertainty in conformity assessment
 - https://www.bipm.org/en/publications/guides/gum.html

