

Quality assurance of analytical measurements – a vital element in safety performance in nuclear field

INTRODUCTION

The approach of reporting results of chemical measurements together with measurement uncertainty is relatively new – 35 years

No Quality Assurance System ______ no accurate results

not fit for purpose

INTRODUCTION

Example

No	Parameter	Method	Maximum allowed value
1.	Chlorides	Turbidimetric	0.02 ppm
2.	Conductivity	Potentiometric	1 μS/cm
3.	рН	Electrometric	5.5 – 7.5

Turbidimetric method – LOD – 1.5 ppm visual

- 1.0 ppm UV-VIS

Conductivity cell sensitivity - 1 mS/cm

pH electrod - not suitable for pure water

not fit for purpose

INTRODUCTION

> IUPAC

"Protocol for the Design, Conduct and Interpretation of Method Performance Studies"

"Harmonized Guidelines for Internal Quality Control in Analytical Chemistry Laboratories"

INTRODUCTION

> EURACHEM

"Quantifying Uncertainty in Analytical Measurement"

INTRODUCTION

IAEA

Safety Standards, Fundamental Safety Principles

Quantifying uncertainty in nuclear analytical measurements

NUCLEAR/RADIOACTIVE MATERIAL CHARACTER

Analytical chemistry of nuclear materials

- Nuclear fuels: uranium, thorium, plutonium
- Moderators
- Coolants
- Structural materials
- Reprocessed spent nuclear fuel

www.shutterstock.com · 1295366692

Characterization of radioactive waste

Steps:

- Collection
- Segregation change waste streams' characteristics
- Treatment -
- Conditioning immobilization package
- Storage
- Disposal

Characterization of radioactive waste

Characterization of radioactive waste

Characteristics:

- physical density, volume, shape, position of the waste and embedding matrixes, quality control, mechanical toughness, cracking, diffusion coefficient, gas release, thermal power, etc.
- chemical elemental composition, content of toxic or reactive substances, etc.
- radiological dose rate, alpha, beta and gamma activity, isotopic composition and mass of nuclear materials, etc.

Nuclear forensic

- prevention and detection of:
- theft
- sabotage
- unauthorized access
- illegal transfer
- malicious acts

involving nuclear material

support law enforcement or nuclear security

Nuclear forensic

- "'Nuclear forensic signatures"
- chemical or isotopic composition,
- elemental concentrations
- chemical impurities
- physical form
- chemical form
- physical dimensions
- visual appearance
- geometry

NUCLEAR ANALYTICAL MEASUREMENTS

- mass spectrometry
- ion beam analysis
- nuclear magnetic resonance spectrometry
- Mössbauer spectrometry
- neutron scattering and diffraction
- neutron activation analysis
- isotopic dilution analysis
- stable isotope and radiotracer studies
- direct radioactivity determinations

NUCLEAR ANALYTICAL MEASUREMENTS

Specific uncertainty features:

> error sources are traceable

ightharpoonup accuracy $\longrightarrow \frac{C_{Tr}^f}{C_{Tr}^i}$

> relative --- calibration --- uncertainty contributions - CRMs

- calibration line fitting

NUCLEAR ANALYTICAL MEASUREMENTS

Specific uncertainty features:

> radioactive decay --- uncertainty - non-linear components

minimization of the uncertainty by scaling of time intervals

> radiation --- detector --- uncertainity components - efficiency

- saturation

- dead time

irradiation — uncertainty components – radiation field intensity

- spectral field distribution
- spatial field distribution

NUCLEAR ANALYTICAL MEASUREMENTS

Specific uncertainty features:

background — uncertainty quantification for the results close to detection limit requires special attention

CHALLENGES IN THE QA OF ANALYTICAL TECHNIQUES IN THE NUCLEAR FIELD

Challenges

- Lack of matrix-matched certified reference materials
- Specialized equipment and processing
- Maintaining relevant expertise and capabilities
- Need for further improvements

Overcome:

- Comparing the analytical results obtained with different analytical techniques
- Combining the analytical results obtained with different analytical techniques
- Proficiency tests

CONCLUSION

- Quality Assurance (QA) for an analytical laboratory is an essential tool to ensure good comparability of data
- ➤ Educational initiatives are taken for re-enforcing the analytical chemistry curriculum, and this both on the conventional chemistry and measurement science
- Practices from nuclear field require a wide range of modern instrumentbased analytical techniques, specialized equipment and processing and relevant expertise to lower radiation hazard
- Extensive research for the development of advanced methods for physical and chemical analysis with increased sensitivity, reliability and thereby enhanced accuracy are conducted to overcome present limitations

