

Beatriz T. S. F. Brasil^{*a,b*}, M. Filomena G. F. C. Camões^{*b*}, Ricardo J. N. Bettencourt da Silva^{*b*}, Pedro A. S. Salgueiro^a

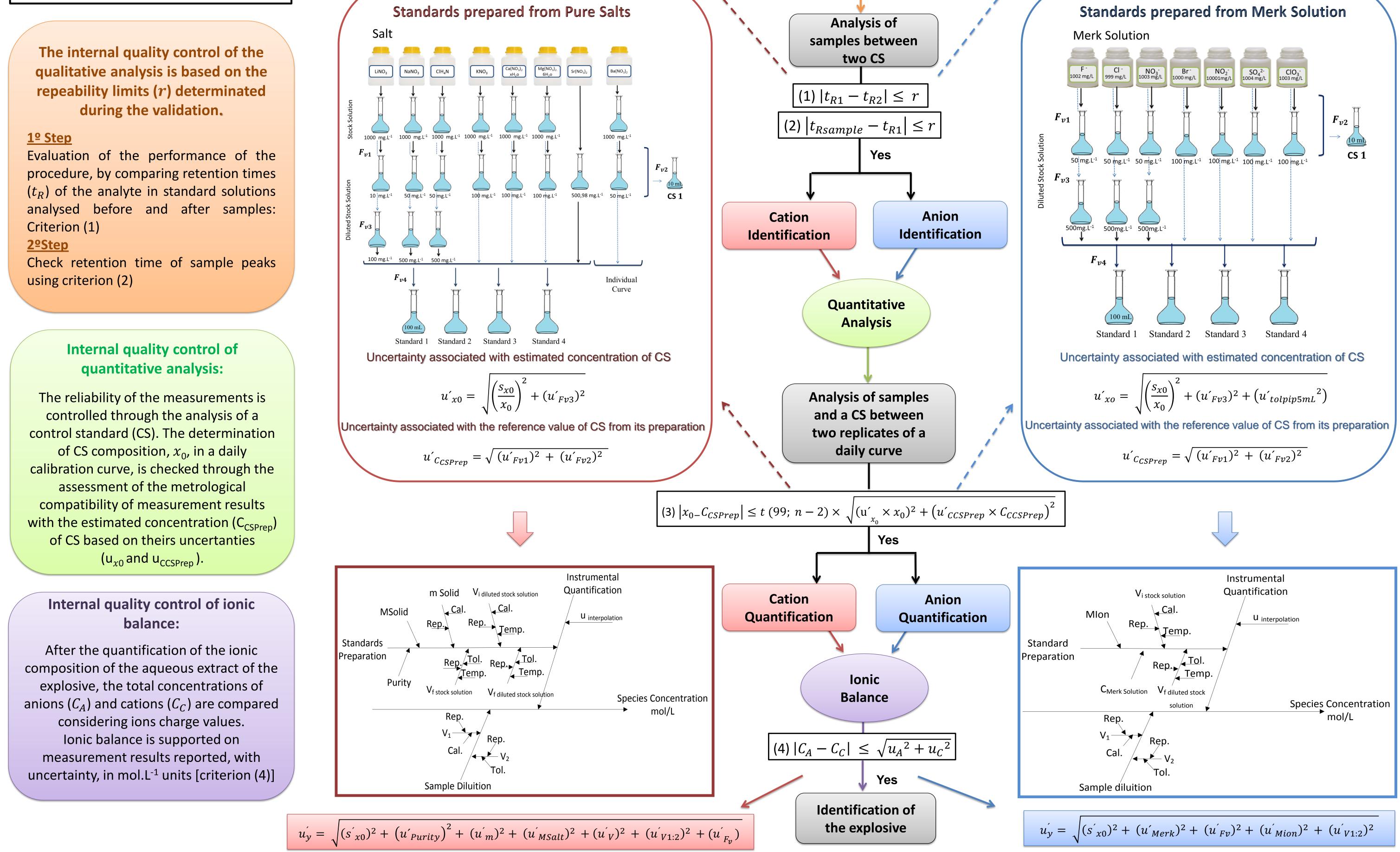
> ^a Laboratório de Polícia Científica, PJ, Lisboa, Portugal; ^b CCMM - Departamento de Química e Bioquímica, FCUL, Lisboa, Portugal

Internal Quality Control of Explosive Substances - Identification by Ion Chromatography

Introduction

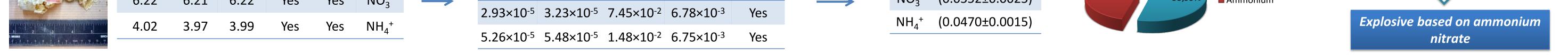
Many types of explosives have been used in terrorist attacks, however, the number of attacks using improvised explosives (IED) is increasing. In most cases, IEDs are inorganic explosives produced using commercially available materials and/or military explosives. The purpose of forensic analysis of explosives is to identify the used explosive that can link it to a suspect. The identification of inorganic explosives is supported on various composition data, from which relative concentration of major components is particularly relevant. For that, selective and sensitive analytical techniques are required, such as ion chromatography (IC). IC allows the identification and quantification of ionic species in water soluble fraction of explosives and consequently determination of their ionic and mass balance. These balances are supported on the uncertainty of estimated composition data.

This study presents the used strategy to control performance of determination of water soluble fraction of explosives including estimated measurement uncertainty using the "bottom-up" approach.


The strategy used to the determination of ionic composition of water soluble fraction of explosives and for the internal quality control of tests are based on the results of the validation of the qualitative and quantitative performance of the procedure. The validation of the quantitative measurement procedure involves the assessment of the linearity and homoscedasticity of variance of the IC response, definition of the calibration range, evaluation of the measurement uncertainty and assessment of standard solutions stability.

Cation	<i>r</i> (min)			Anion	r (min)
Lithium	0.086	IC Ana	aiysis	Flueride	0.045
Sodium	0.092			Fluoride	0.045
Ammonium	0.093		4	Chloride	0.079
Potassium	0.099	Cation Analysis	Anion Analysis	Nitrite	0.071
Calcium	0.328			Bromide and Chlorate	0.155
Magnesium	0.403			Nitrate	0.104
Strontium	0.465	Qualit	ativo	Sulfate	0.225
Barium	0.697	Analy		Carbonate	0.151
		R			

during the validation.


quantitative analysis:

controlled through the analysis of a of CS composition, x_0 , in a daily calibration curve, is checked through the assessment of the metrological compatibility of measurement results of CS based on theirs uncertanties

ANALYSIS OF REAL SAMPLES

Samples	ldentification of species and respective quality control							Quality control of the quantification				Sample results					Ionic Balance	
ENTRA ROUGE	t _{RSample}	t _{R1}	t _{R2}	(1)	(2)	lon		x ₀ (mol.L⁻¹)	C _{CSPrep} (mol.L ⁻¹)	u ´ _{x0}	u´ _{CCSPrep}	(3)		lon	mol.L ⁻¹	1,69%	$ C_{NO_3} $ -	$-\left(C_{NH_4} + C_{\underline{Ca}}\right) \leq \sqrt{u_{NO_3}^2 + u_{(NH_4 + \underline{Ca})}^2}$
THE COUGE CONTRACTOR	6.25	6.21	6.24	Yes	Yes	NO ₃ -		3.30×10 ⁻⁵	3.23×10 ⁻⁵	7.91×10 ⁻²	² 6.78×10 ⁻³	Yes		NO ₃ -	(0.030±0.001)		Nitrate	↓ ✓ (4)
GEMULIT EXTRA ROUGE CLAR ADUGE CLAR EXTRA ROUGE	4.05	3.97	3.99	Yes	Yes	NH_4^+	\rightarrow	5.26×10 ⁻⁵	5.48×10 ⁻⁵			Yes		NH_4^+	(0.0248±0.0007)		Ammonium Calcium	Explosive based on ammonium
	8.11	7.8	7.69	Yes	Yes	Ca ²⁺		5.40×10 ⁻⁵	4.94×10 ⁻⁵	1.30×10 ⁻²	e 6.78×10⁻³	Yes		Ca ²⁺	(0.00189±0.00003)			nitrate and calcium nitrate
		tad	the	(1)	(2)	lon		<i>x</i> ₀	C _{CSPrep}		-1	(2)		lon	mol.L ⁻¹			$\left C_{NO_{3}} - C_{NH_{4}}\right \leq \sqrt{u_{NO_{3}}^{2} + u_{NH_{4}}^{2}}$
AS DO			$\iota_{\rm R2}$					(mol.L ⁻¹)	(mol.L ⁻¹)	u _{x0} <i>u</i>	l _{CCSPrep}	(3)		lon			Nitrate	↓ ✓ (4)
and the second	6.22	6.21	6.22	Yes	Yes	NO_3^{-}	\rightarrow						\rightarrow	NO ₃ -	(0.0552±0.0025)	53,99%	Ammonium	

CONCLUSION:

The developed test quality control strategy ensures the reliable identification and quantification of the ionic composition of water soluble fraction of explosives, including the estimated measurement uncertainty needed for ionic balance

assessment.

BIBLIOGRAPHY:

(1)Eurachem, CITAC (2000) Quantifying uncertainty in analytical measurement, Guide CG4, 2nd edn, Eurachem.

(2) International Vocabulary of Metrology – Basic and General Concepts ans Associates Terms VIM, 3rd edition, JCGM 200:2008