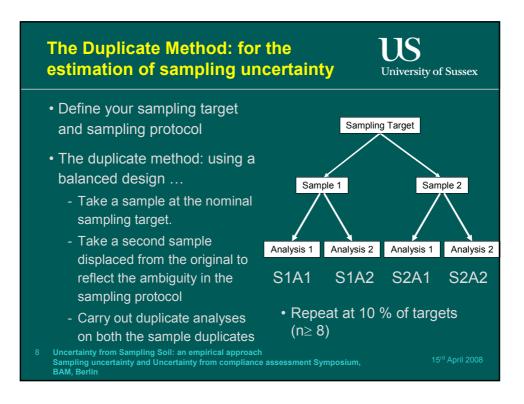

Uncertainty from sampling soil: an empirical approach

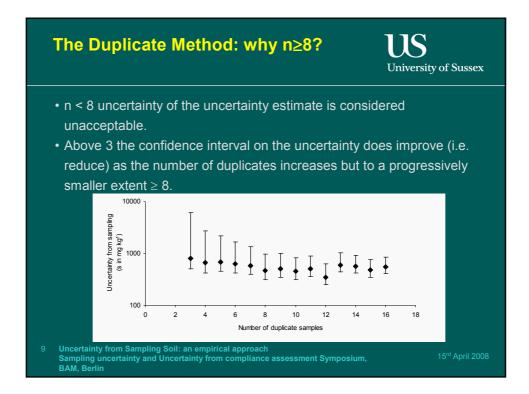
Dr Katy Boon University of Sussex

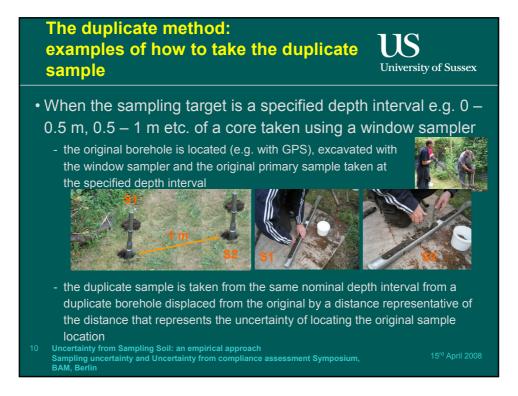
k.a.boon@sussex.ac.uk

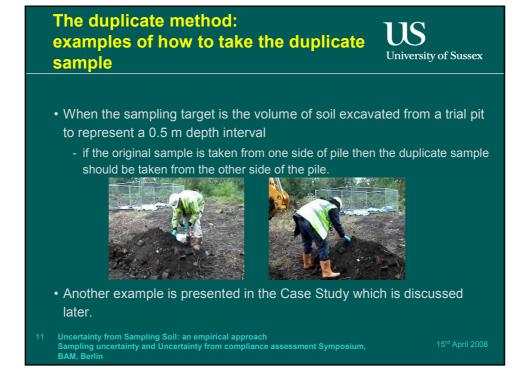
Uncertainty in sa where from?	University of Sussex	
Sampling	Sample Preparation	Analysis
 the sampling protocol selected and its implementation. the sampler the sampling device cross-contamination small-scale heterogeneity sample handling the environmental conditions 	 Drying Storage Grinding of the sample Mixing of the sample Dividing the sample 	 in-lab sub-sampling sample effects (e.g. matrix effects) environmental conditions storage duration and conditions, instrument effects calibration error, operator effects

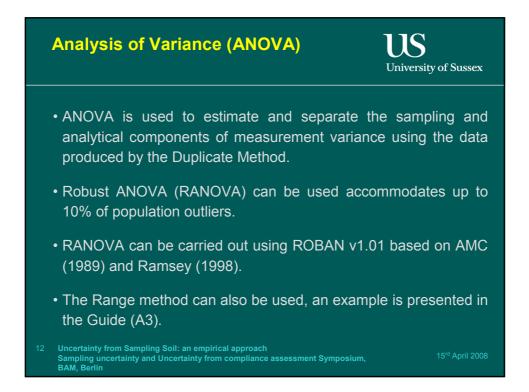
- University of Sussex
- Determines directly the combined contribution to the uncertainty of the result
 - from all the sources of uncertainty
 - using method performance data from in-house or inter-organisational measurement trials.
- · Looks at the scatter of replicated measurements
- Can then be broken down into contributions from components such as sampling and analysis (if required).
- Includes both systematic and random components (¹ precision of a method).
- 5 Uncertainty from Sampling Soil: an empirical approach Sampling uncertainty and Uncertainty from compliance assessment Symposium, BAM, Berlin


5rd April 2008


The 4 empirical methods for the estimation of measurement uncertainty University of Sussex									
Method	Description	Number of	Number of	Components estimated					
Wethou	Description	samplers	protcols	P _{anal}	B _{anal}	P _{samp}	B _{samp}		
1	Duplicate samples	1	1	Yes	CRM	Yes	No		
2	Different protocols	1	Multiple	Yes	CRM	Between protocols			
3	Collaborative Trial in sampling (CTS)	Multiple	1	Yes	CRM	Between samplers			
4	Sampling Proficiency Test (SPT)	Multiple	Multiple	Yes	CRM	Between protocols and between samplers			
Sampl									


The estimation of uncertainty: The Duplicate Method



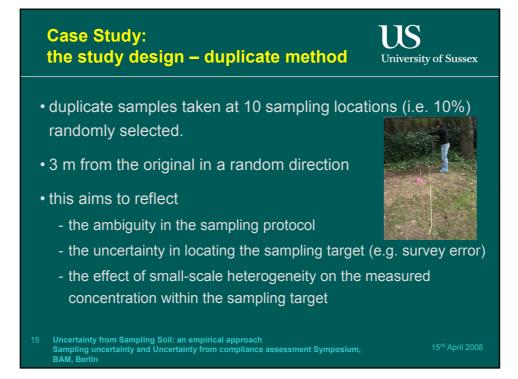

- Random component
 - estimated from the precision of methods (sampling and analytical)
 - using the Duplicate Method and ANOVA or the range method (Example A3 in the guide)
 - both sampling and analytical uncertainty components.
- Systematic component
 - estimated from the bias of a method
 - use of CRMs to estimate the analytical uncertainty
 - only possible to estimate the sampling bias if have a Reference Sampling Target (RST) or by carrying out a CTS or SPT
- 7 Uncertainty from Sampling Soil: an empirical approach Sampling uncertainty and Uncertainty from compliance assessment Symposium, BAM, Berlin

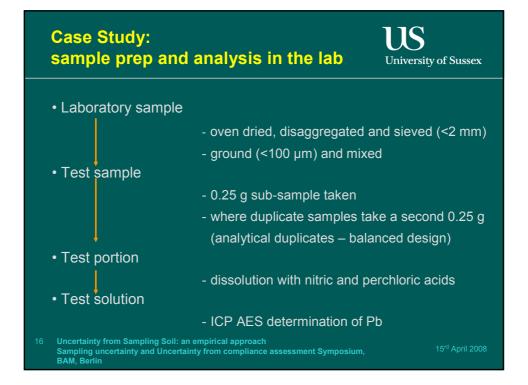
Case study: demonstration of the Duplicate Method for the estimation of sampling uncertainty

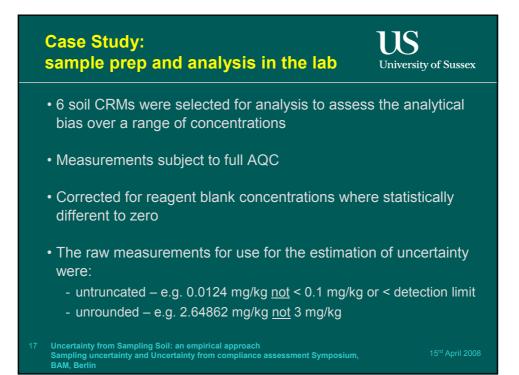
The scenario:

- A former landfill, in West London
- 9 hectare = 90 000 m²
- Potential housing development
- Key contaminant \rightarrow Pb

The target:


- 30 m x 30 m area \rightarrow depth of 0.15 m
- 100 sampling targets in total


* A clear definition of the target is important

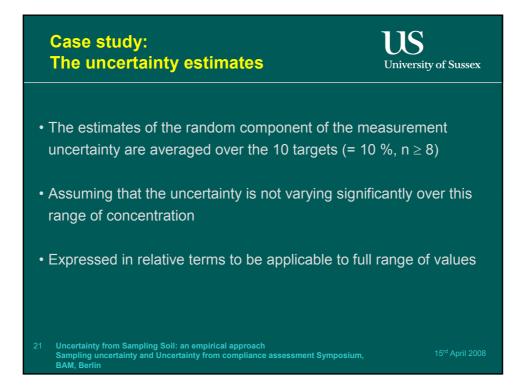

13 Uncertainty from Sampling Soil: an empirical approach Sampling uncertainty and Uncertainty from compliance assessment Symposium, BAM, Berlin

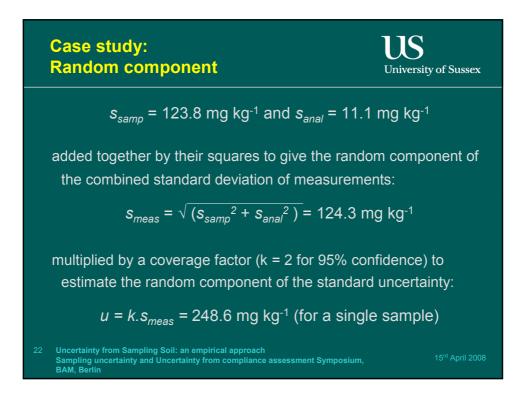
15rd April 200

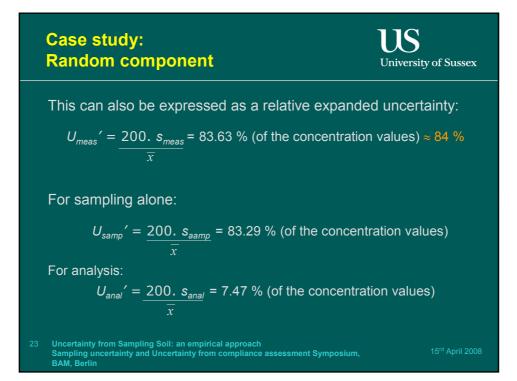
<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row><list-item><list-item><list-item><list-item><list-item><list-item>

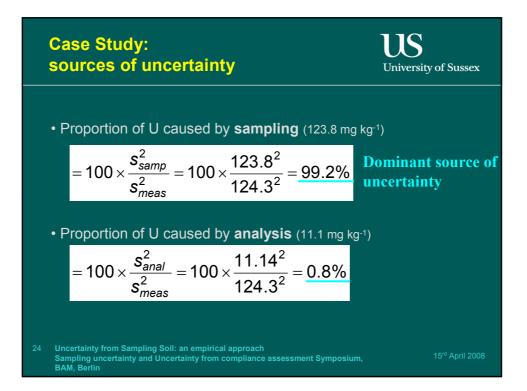
	as he	University of Susse									
Row	А	в	с	D	E	F	G	н	ı	L	
1	474	287	250	338	212	458	713	125	77	168	
2	378	3590	260	152	197	711	165	69	206	126	Only 16/100 locations ove
3	327	197	240	159	327	264	105	137	131	102	UK SGV = 450 mg Pb/kg
4	787	207	197	87	254	1840	78	102	71	107	
5	395	165	188	344	314	302	284	89	87	83	 Mainly uncontaminated
6	453	371	155	462	258	245	237	173	152	83	(84%)
7	72	470	194	83	162	441	199	326	290	164	
8	71	101	108	521	218	327	540	132	258	246	
9	72	188	104	463	482	228	135	285	181	146	
10	89	366	495	779	60	206	56	135	137	149	↓ 30 m Arqyraki (1997
S		ng unc				: an er rtainty				∢ →	ssment Symposium, 15 rd April 20

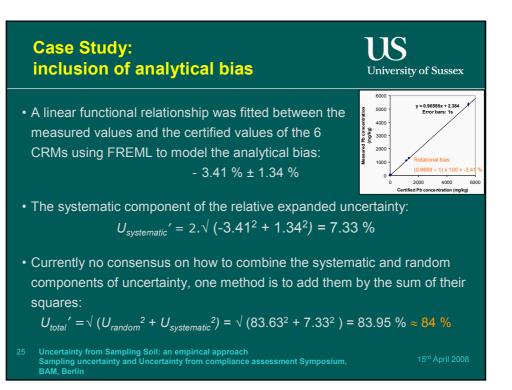
Case Study: The results – from the balanced design University of Sussex

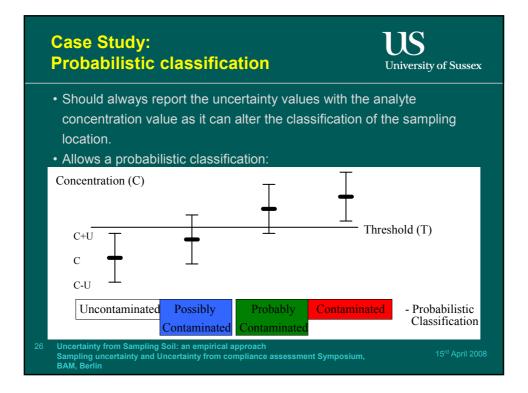

 Low level agreement between sample 	SAMPLE I.D.	S1A1 (mg kg ⁻¹)	S1A2 (mg kg ⁻¹)	S2A1 (mg kg ⁻¹)	S2A2 (mg kg ⁻¹)
duplicates (e.g. D9)	A4	787	769	811	780
	B7	338	327	651	563
\rightarrow high level of	C1	289	297	211	204
sampling uncertainty	D9	662	702	238	246
	E8	229	215	208	218
 Agreement between 	F7	346	374	525	520
	G7	324	321	77	73
analytical duplicates	H5	56	61	116	120
much better < 10 %	19	189	189	176	168
difference	J5	61	61	91	119

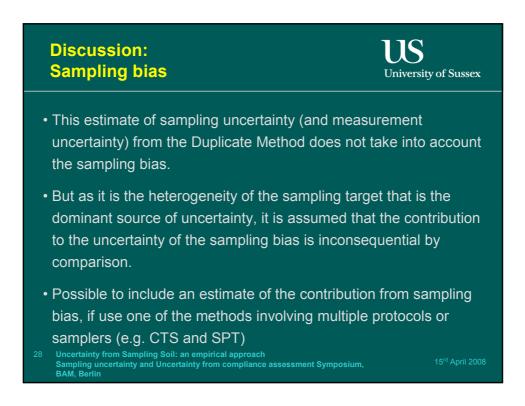

• Robust ANOVA (Roban) selected to allow for the outlying values evident in this data.

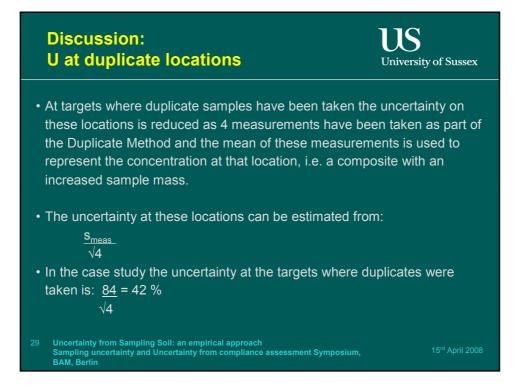

19 Uncertainty from Sampling Soil: an empirical approach Sampling uncertainty and Uncertainty from compliance assessment Symposium, BAM, Berlin

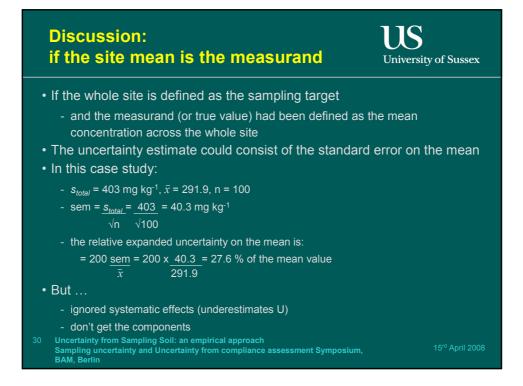

5rd April 2008

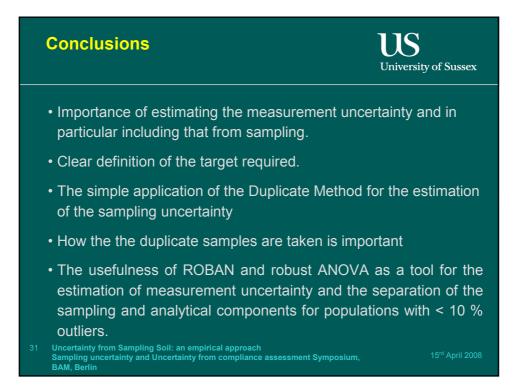

Case Stud Roban out	- <mark>-</mark>			University of Sussex
CLASSICAL ANOVA RE Mean = 317.79999 Standard Deviation (Tota				Geochemical = between-target unit = mg kg ⁻¹
Sums of Squares = 1738	,	6473 Sampling	Analysis	
Standard Deviation Percentage Variance	197.55196 67.646327	135.43246 31.792678	17.990274 0.5609926	
ROBUST ANOVA RESU		002010	0.000020	
Mean = 297.30884 Standard Deviation (Tota	ıl) = 218.48763			
Standard Deviation	Geochemical 179.67409	Sampling 123.81386	Analysis 11.144044	Measurement 124.31436
Percentage Variance	67.62655	32.113293	0.26015487	32.373447
Relative Uncertainty	-	83.289726	7.4966113	83.626415
(% at 95% confidence)				

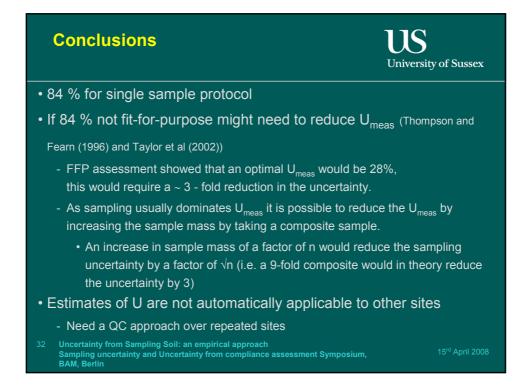


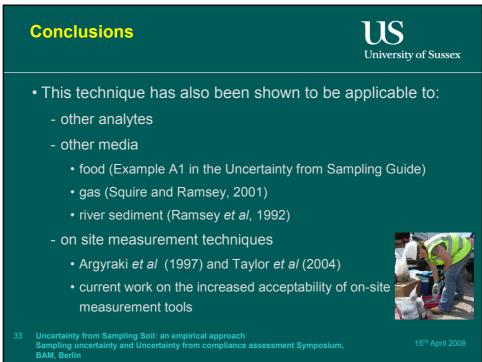


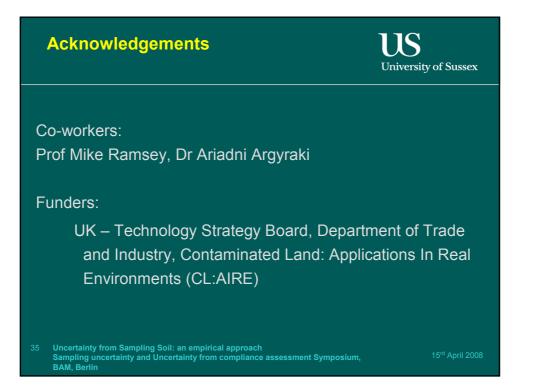







Row	Α	В	С	D	Е	F	G	Н	I	J
1	474	287	250	338	212	458	713	125	77	168
2	378	<u>3590</u>	260	152	197	711	165	69	206	126
3	327	197	240	159	327	264	105	137	131	102
4	787	207	197	87	254	1840	78	102	71	107
5	395	165	188	344	314	302	284	89	87	83
6	453	371	155	462	258	245	237	173	152	83
7	72	470	194	83	162	441	199	326	290	164
8	71	101	108	521	218	327	540	132	258	246
9	72	188	104	463	482	228	135	285	181	146
10	89	366	495	779	60	206	56	135	137	149
2	11% c	of loca	ations	at le	ast 'p	ossib	ly cor	ntami	nated	,





BAM, Berlin

References U	S versity of Sussex
 M H Ramsey and S L R Ellison (eds.) Eurachem/EUROLAB/CITAC/Nordtest/AMC Guide: Measureme sampling: a guide to methods and approaches Eurachem (2007). ISBN 978 0 948926 26 6. Available f secretariat 	, ,
AMC (1989). 'Robust statistics - how not to reject outliers - Part1. Basic Concepts'. Analyst, 114, 1693-1697.(Ramse	ey, 1998)
Argyraki A. (1997). Estimation of measurement uncertainty in the sampling of contaminated land. PhD Thesis, Depar Science and Technology, Imperial College, London. pp. 240.	rtment of Environmental
Argyraki A., Ramsey M. H. and Potts P. J. (1997). 'Evaluation of portable X-ray fluorescence instrumentation for in contaminated land'. <i>Analyst</i> , 122 , 743-749.	situ measurements of lead or
Lyn, J.A., Ramsey, M.H., Coad, S., Damant, A.P., Wood, R. and Boon, K.A. (2007) 'The duplicate method of uncert enough?' (Submitted to Analyst Feb 2007)	tainty estimation: are 8 targets
Ramsey M. H. (1998). 'Sampling as a source of measurement uncertainty: techniques for quantification and compa Journal of Analytical Atomic Spectrometry, 13 , 97-104.	arison with analytical sources'
Ramsey M.H. (2004) 'Improving the reliability of contaminated land assessment using statistical methods: Part 1 – B CL:AIRE Technical Bulletin, TB7, 1-4	Basic Principles and Concepts'
Ramsey M. H., Thompson M. and Hale M. (1992). 'Objective Evaluation of Precision Requirements for Geoche Analysis of Variance'. Journal of Geochemical Exploration, 44, (1-3), 23-36.	emical Analysis Using Robus
Squire S. and Ramsey M. H. (2001). 'Inter-organisational sampling trials for the uncertainty estimation of landfill g Environmental Monitoring, 3, (3), 288-294.	gas measurements'. <i>Journal o</i>
Taylor P. D., Ramsey M. H. and Potts P. J. (2004). 'Balancing measurement uncertainty against financial benefits: situ analysis of contaminated land'. <i>Environmental Science & Technology</i> , 38 , 6824-6831.	: Comparison of in situ and e>
Thompson M. and Fearn T. (1996). What exactly is fitness for purpose in analytical measurement? Analyst, 121 , (3)), 275-278.
34 Uncertainty from Sampling Soil: an empirical approach Sampling uncertainty and Uncertainty from compliance assessment Symposium, BAM, Berlin	15 rd April 2008

