Uncertainty from sampling food—an empirical approach

Michael Thompson

Birkbeck University of London Malet Street, London WC1E 7HX <u>m.thompson@bbk.ac.uk</u>

Michael H Ramsey

University of Sussex Brighton BN1 9QG m.h.ramsey@sussex.ac.uk

Scientists involved in this project

From the University of Sussex:

Prof Michael Ramsey Dr Bas Geelhoed Dr Jennifer Lyn Ilaria Palestra

From Birkbeck University of London:

Prof Michael Thompson

From the Food Standards Agency:

Dr Roger Wood Dr Andy Damant Dr Ellis Evans

'Quality' concepts and actions

- *<u>Fitness for purpose</u>*: what uncertainty is best for the customer?
- <u>Method validation</u>: can the method produce a suitably low uncertainty?
- <u>Internal quality control</u>. have things changed since validation? (*i.e.*, did the method work well on the day?
- <u>Proficiency testing</u>: does the whole system really work?

The traditional approach is logically untenable. Why?

 Customers (and other stakeholders) need to know the total combined uncertainty to make informed decisions <u>about the target</u>.

$$u = \sqrt{u_{sam}^2 + u_{an}^2}$$

Components of sampling uncertainty

- <u>Bias</u>—difficult, often impracticable to address.
- <u>Precision</u>—Easy to address so long as a random element can be introduced into replicating the procedure.

- Some experts think that sampling bias does not exist.
- Essentially they hold that sampling methods are empirical, *i.e.*, give an unbiased sample by definition.
- That is not generally correct—it is easy to see how sampling bias could arise in practice.

Addressing bias	
Analytical	Sampling
Reference material	Reference target (Severe problems with cost, stability)
Reference method <i>vs.</i> candidate method (multiple test materials)	Reference method <i>vs.</i> candidate method (multiple test targets)

Sampling precision

- Variations in execution of procedure.
- Variations in composition (heterogeneity) of target.
 - Sampling precision may vary from target to target of the same nominal type.
 - Initial validation of the sampling protocol needs to be supported by ongoing checks (internal quality control).
- Good estimation of precision needs <u>RANDOM</u> replication of sampling.

Collaborative trial

- Requires: multiple targets, multiple samplers, duplicate samples, duplicate analysis (random repeatability conditions).
- Provides: analytical repeatability variance, between-sample (repeatability) variance, between-SAMPLER (reproducibility) variance.
- Drawbacks: VERY expensive.
- Current usage: research only.

Method validation—nitrate in lettuce

- Nitrate a potential risk to human health
- EU threshold is 4500 mg kg⁻¹ for batch concentration
- Current sampling protocol specifies taking 10 heads to make a single composite sample from each batch.
- Sampling uncertainty unknown

Randomisation is important...

...but not always exactly feasible. Here we use systematic replication.

Statistics from robust ANOVA

$$\hat{\sigma}_{anal} = 168$$

 $\hat{\sigma}_{samp} = 319$
 $\hat{\sigma}_{comb} = 361$
 $\overline{\hat{\mu}} = 4346$

•Is the accuracy fit for purpose? •(*Note*: σ is equivalent to standard uncertainty if measurement bias is absent.)

Total cost T

$$T = L_m + L_d$$

= $L_m + \iint L(x, \mu) P_m(x|\mu) P(\mu) dx d\mu$

 $P_m(x|\mu)$ is the distribution of the result, given the true value;

 $P(\mu)$ is the distribution of knowledge about where the true value might lie.

Desiderata

- Samplers use their own preferred sampling protocol.
- Scheme provider conducts analysis under repeatability conditions (with $\sigma_a << \sigma_{s(R)}$).
- Provider specifies a fitness-for-purpose criterion.
- Provider uses an independent assigned value if possible
- Provider calculates a z-score.

General references

 Measurement uncertainty arising from sampling: a guide to methods and approaches.
M H Ramsey and SLR Ellison Eurachem/Eurolab/CITAC/Nordtest/ AMC Guide 2007, 111 pages.
(Free download from www.eurachem.org/guides/UfS_2007.pdf)

 Uncertainty from sampling, in the context of fitness for purpose. (Review)
M H Ramsey and M Thompson
Accred Qual Assur, 2007, 12, 503-513.

