

The 2006 IUPAC Harmonized Protocol for Proficiency Testing

M Thompson

S L R Ellison

R Wood

IUPAC Interdivisional Committee for the Harmonisation of Quality Control Systems

NEW!! IUPAC Harmonized Protocol for Proficiency Testing

Slimmer, Fitter Scoring!!

Detects Multimodal sets!!

Cleaner Homogeneity tests!!

Scope of 2006 IUPAC protocol

- Only chemical analysis.
- Only results obtained on a fitness-for-purpose basis (*i.e.*, suitable for z-scoring with a pre-set value of σ_p).
- Only results on an interval scale or a ratio scale.
- Primarily scientific aspects
 - minimal administrative details
 - no criteria for assessment or accreditation of laboratories or PT schemes.

Properties of an ideal scoring method

- Adds value to raw results
 - Tells you more than just looking at raw data
- Easily understandable
 - e.g. based on the properties of the normal distribution.
- Has no arbitrary scaling transformation.
- Is transferable between different concentrations, analytes, matrices, and measurement principles.

A bad scoring method

$$z = (x - \overline{x})/s$$

$$\overline{x} = 2.126$$

$$s = 0.077$$
"Z"-scores for example data FAPAS 0131

97% of scores in range $-2 \le z \le 2$

 On average, somewhat more than 95% of laboratories receive z-score within the range ±2.

Another weak scoring method

$$z = (x - \hat{\mu}_{rob})/\hat{\sigma}_{rob}$$

 \sim 91% of data within range -2 < z < 2

"Z"-score for example data FAPAS 0131

 On average, slightly less than 95% of laboratories receive a z-score between ±2.

2006 HP Scoring

Focuses on the z-score

$$z = (x - \hat{\mu}_{rob})/\sigma_p$$
 where $\sigma_p \equiv u_f$

'Fit-for-purpose' scoring basis

$$\sigma_{\rm p} \equiv u_{\rm ffp}$$

- Robustified against extreme values and informative about fitness for purpose.
- The protocol is not restricted to consensus values

"Fit-for-purpose" scoring: Example

Set fitness for purpose criterion at RSD of 1%.
 This gives:

- About 78% within 0±2
 - ..for THIS data set with THIS criterion

Non-normal distributions

- Non-normal and multimodal distributions most commonly arise when the participants' results come from two or more inconsistent methods.
- Skews can arise as an artefact at low concentrations of analyte as a result of data recording (mal)practice.
- Sometimes skew can arise when the distribution is fundamentally non-normal
 - Example: GMO data expected to be <u>approximately</u> lognormal
 - Transform before evaluation

Handling Multimodal data

- Generate kernel density (h=0.75σ_p)
- Minor modes large
- Largest mode deemed 'correct'*
- Use Kernel Density Mode

If not, abandon scoring and investigate further

FAPAS Arsenic data, round 0750

Uncertainty of the mode

- The uncertainty of the consensus can be estimated as the standard error of the mode by applying the bootstrap to the procedure.
- The bootstrap is a general procedure based on resampling for estimating standard errors of complex statistics.
- Reference: Bump-hunting for the proficiency tester searching for multimodality. P J Lowthian and M Thompson, Analyst, 2002, 127, 1359-1364.

Homogeneity testing in HP1/HP2: Procedure

- Comminute and mix bulk material.
- Split into distribution units.
- Select m>10 distribution units at random.
- Homogenise each one.
- Analyse 2 test portions from each in random order, with high precision, and conduct one-way ANOVA on results.

Homogeneity testing in HP1/HP2: Differences

Rejects if

$$s_{sam} \leq 0.3\sigma_p$$

Forbids outlier rejection

- Uses Thompson-Fearn test for "sufficient homogeneity"
- Requires (1) within-bottle outlier rejection

"Sufficient homogeneity" in HP1

Material passes homogeneity test if

$$s_{sam} \leq 0.3\sigma_p$$

- Problems are:
 - s_{sam} may not be well estimated (9 degrees of freedom);
 - single-laboratory precision often close to $0.3\sigma_p$
 - too big a probability of rejecting satisfactory test material.

New protocol: Fearn-Thompson test

- Test $H_0: \sigma_{sam}^2 < \sigma_{all}^2$ (usually 0.3)
- Reject when

$$s_{sam}^{2} > \frac{\sigma_{all}^{2} \chi_{m-1}^{2}}{m-1} + \frac{s_{an}^{2} (F_{m-1,m} - 1)}{2}$$

Less likely to reject at random

Ref: Analyst, 2001, 127, 1359-1364.

One-way ANOVA gives:

$$F = 9.5$$
; $p = 0.001$

Why use outlier rejection?

Distance of outlier from mean (units of analytical s.d.)

Within-bottle outliers weaken the homogeneity test

Conclusion: New directions in the IUPAC protocol

- Stronger emphasis on fitness-for-purpose in scoring
- Clear acceptance of continued use of consensus values
 - with advice on implementation
- Testing for statistical evidence of insufficient homogeneity instead of fixed value
- Does not recommend that the organiser provide scores based on participant uncertainties
 - DOES control uncertainties in assigned value
 - Provides methods for participants to assess their own uncertainty and fitness for purpose