

Outline

- Introduction
- Study design
- Results
- Interpretation
- Advantages and Problems
- Recommendation

Introduction:

- Eurachem / CITAC Guide CG4: Uncertainty: "a parameter associated with the result of a measurement that characterizes the dispersion of the values attributed to the measurand".
- In CQML: values are based on the robust consensus mean of the participants. As a result, robust consensus mean have an uncertainty originating from the testing conditions of laboratories and other factors.

3

Introduction cont.,

- MU is not yet included in CQML report for participating lab.
- Lab Performance is based on comparing values for all methods not method groups.
- Future Plan: Lab Performance will be according to method groups.

Study design:

In this study, the uncertainty of the robust mean of Glucose(mg/dl) and Alkaline phosphatase(U/l) results was checked during the year 2019. (8 samples)

- Calculation is based on ISO 13528
- Uncertainty = $MU = 1.25 \times SD / \sqrt{n}$
- $0.3 \times SD$ was used for comparison with MU

5

Values of uncertainty for all methods

Sample #	Uncertainty Glucose	Uncertainty Alkaline Phosphatase
73	0.5	2.9
74	0.7	3.1
75	0.7	3.5
76	0.5	2.8
77	0.5	3.1
78	0.4	2.7
79	0.7	6.5
80	0.5	2.5
Average	0.6	3.4

MU for Alkaline phosphatase/method

Method	Uncertainty	0.3×SD
Colorimetric	9.5	12.7
AMP, optimized to IFCC	7.8	11.9
Diethanolamine buffer, DEA	4.4	8.9
Tris/carbonate buffer	<u>26</u>	7.3
Ortho Vitros Microslide Systems	-	-
AMPD optimized to JSCC	<u>15.9</u>	11.9
Siemens/Dade Dimension, AMP buffer	<u>13.9</u>	7
AMP, reduced interference	<u>20.3</u>	9.8
AMP, non-optimized	<u>19.6</u>	12.1
Dry Chemistry	<u>8.2</u>	6
Other	5.9	12.3

MU for Glucose / method

Method	Uncertainty	$0.3 \times SD$
Oxidase/Peroxidase	0.8	2.5
Hexokinase	1.6	2.2
Glucose dehydrogenase	<u>5.3</u>	3.9
Other	1.4	2.3
GOD/02-Beckman method	<u>5.5</u>	3.4
Oxygen electrode	-	-
Agappe - GOD-PAP	1	2.6

Interpretation:

- According to ISO/IEC 13528, if the uncertainty of the assigned value is smaller than the 0.3 × SD of the scheme, there is no need to include the uncertainty in the interpretation of the results of the proficiency scheme.
- Glucose and Alkaline phosphatase MU (averages) is less than $0.3 \times SD$
- Uncertainty for some methods is larger than the $0.3 \times SD$ for method.

9

Advantage of reporting MU:

- Lab Accreditation (ISO 15189 & 17025).
- Laboratories can compare their (MU) with other laboratories using the same method and other methods.

Problems:

- The lack of knowledge of the concept of uncertainty and its calculation by laboratories.
- Method Groups for some measurands is less than 5.
- Failure to choose the correct method for examination test by laboratories.

Conclusion and Recommendation

- ▶ Training is required for participating labs on the use and calculation of Uncertainty
- ▶ Eliminating methods with high uncertainty

