

Overview

- t-tests
- F-test
- Analysis of variance (ANOVA)
- Excel data analysis tools

Typical questions

- Comparison of the mean of a data set with a known value
 - e.g. are the results from the analysis of a CRM significantly different from the certified value? One-sample *t*-test
- Comparison of the means of two independent data sets
 - e.g. is there any significant difference between the results produced by two analysts?
 Two-sample *t*-test
- Comparison of pairs of data obtained from two treatments applied once each to a range of different test samples
 - e.g. is there any significant difference between the results produced by two different test methods? Paired-sample t-test
- Comparison of the standard deviations of two independent data sets
 - e.g. is there any significant difference between the precision produced by two methods? F-test

One sample t-test

Alternative Hypothesis	t	Tests for
Not equal to x_0 (two-tailed)	$t = \frac{ \bar{x} - x_0 }{{}^{S}/\sqrt{n}}$	Any difference?
Greater than x_0 (one-tailed)	$t = \frac{(\bar{x} - x_0)}{{}^{S}/\sqrt{n}}$	Exceeding reference value/ upper limit
Less than x_0 (one-tailed)	$t = \frac{(x_0 - \bar{x})}{S / \sqrt{n}}$	Below reference value/ lower limit

Significance: $t > t_{crit}$

One-sample *t*-test Example

- Validation of a method for the determination of arsenic in effluent analysis of a certified reference material (CRM)
 - mean = 33.9 μ g L⁻¹ (n = 11), s = 0.63 μ g L⁻¹
 - certified value = 32.4 μg L⁻¹
- · State the question
 - does the mean of the results from the analysis of the CRM differ significantly from the certified value?
- · Select the test
 - we are comparing a mean value with a reference value one-sample t-test
- · Choose level of significance
 - 5% significance (α = 0.05, 95% confidence)
- · Decide number of tails
 - two-tailed test (interested in a difference either direction)

One-sample *t*-test Example (continued)

- · Calculate degrees of freedom
 - degrees of freedom v = n-1 = 10
- Obtain critical value
 - 5% significance, two-tailed test, 10 degrees of freedom

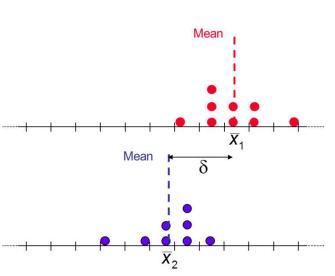
•
$$t_{0.05,10} = 2.228$$

Calculate test statistic from experimental data

$$t = \frac{|\bar{x} - x_0|}{{}^{S}/\sqrt{n}} = \frac{|33.9 - 32.4|}{0.63/\sqrt{11}} = 7.897$$

- · Compare the test statistic with the critical value
 - $t>t_{0.05,10}$ the mean is significantly different from the certified value

Significance testing between sets of data Two-sample *t*-test



$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \left[\frac{s_1^2(n_1 - 1) + s_2^2(n_2 - 1)}{n_1 + n_2 - 2}\right]}}$$

If
$$n_1 = n_2$$
:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{s_1^2 + s_2^2}{n}}}$$

$$\nu = n_1 + n_2 - 2$$

(Assumes equal variance*)

*Note – there is also an 'unequal variance' version of the test

Two-sample *t*-test Example

- · 2 methods for determining selenium in cabbage are being compared
- 16 test portions are selected from the same cabbage sample
- 8 portions are analysed using each method
- Is there any significant difference between the means of the results obtained using the 2 methods (95% confidence)?

	n	Mean \bar{x} (mg/100 g)	Standard deviation s (mg/100 g)	
Method 1	8	0.199	0.0123	
Method 2	8	0.155	0.00810	

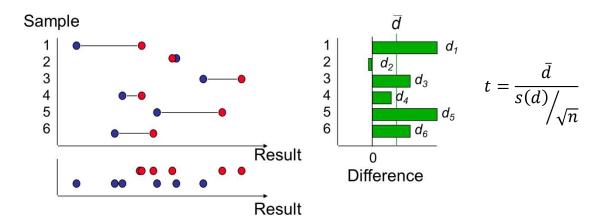
Two-sample *t*-test Example

- Comparing 2 independent estimates of the mean, variances of datasets are not significantly different – two-sample t-test assuming equal variance
- 95% confidence
- Two-tailed test is there a difference between the mean values?
- Degrees of freedom: $v = n_1 + n_2 2 = 14$
- Critical value: $t_{0.05,14} = 2.145$ (two-tailed)
- · Calculate test statistic from experimental data

$$t = \frac{|\bar{x}_1 - \bar{x}_2|}{\sqrt{\frac{s_1^2 + s_2^2}{n}}} = \frac{|0.199 - 0.155|}{\sqrt{\frac{0.0123^2 + 0.00810^2}{8}}} = 8.450$$

t>*t*_{0.05,14} there is a significant difference between the means

Significance testing between paired samples Paired sample *t*-test



Paired *t*-test Example

- · 2 methods for determining GMO in maize are being compared
- 6 different samples of maize analysed
- Each sample divided into 2 parts one half analysed using Method A, the other half analysed using Method B
- Is there any significant difference between the results obtained using the 2 methods (95% confidence)?
- The data are paired

	n	Mean difference \bar{d} (%GMO by mass)	Standard deviation of differences of differences $s(d)$ (%GMO by mass)
Method A-B	6	-0.0688	0.0226

Paired-sample *t*-test Example

- Comparing pairs of data paired t-test
- 95% confidence
- Two-tailed test is there a difference between the results obtained using the 2 methods?
- Degrees of freedom: $v = n_{pairs}$ -1 = 5
- Critical value: $t_{0.05,5} = 2.571$ (two-tailed)
- Calculate test statistic from experimental data

$$t = \frac{|\bar{d}|}{s(d)/\sqrt{n}} = \frac{|-0.0688|}{0.0226/\sqrt{6}} = 7.457$$

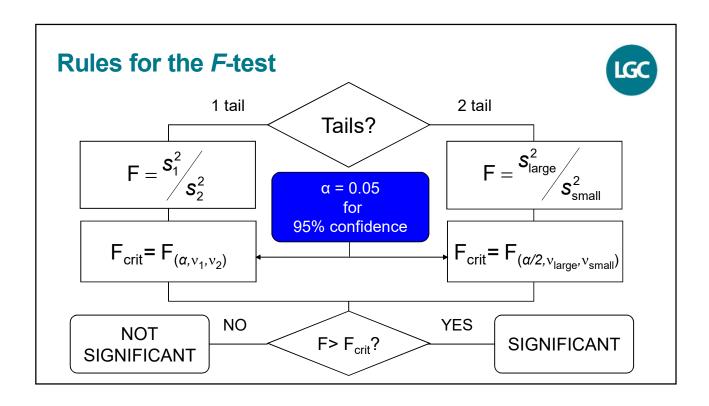
*t>t*_{0.05,5} there is a significant difference between the results obtained from method A and method B

The F-test

• To compare the spread, use the ratio of variances:

$$F = \frac{s_1^2}{s_2^2}$$

 This ratio, the 'F-statistic', can be compared with values in tables (the 'F-test')



F-test

Example

- 2 methods for determining selenium in cabbage are being compared
- 16 test portions are selected from the same cabbage sample
- 8 portions are analysed using each method
- Is there any significant difference between the precision of the results obtained using the two methods (95% confidence)?

	n	Mean (mg/100 g)	s (mg/100 g)
Method 1	8	0.199	0.0123
Method 2	8	0.155	0.00810

F-test Example

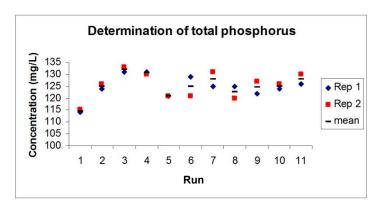
- Comparing variability (standard deviations) F-test
- 95% confidence
- Two-tailed test is there any difference between the variance of the results obtained using the 2 methods?
- Degrees of freedom: v = n-1 = 7 for both data sets
- Critical value: $F_{0.025,7,7}$ = 4.995 (one-tailed value for $\alpha/2$ to give required two-tailed value)
- Calculate test statistic from experimental data (larger variance as numerator for two-tailed test)

$$F = \frac{0.0123^2}{0.00810^2} = 2.306$$

F<F_{0.025,7,7} there is no significant difference between the variance of the results obtained from 2 methods

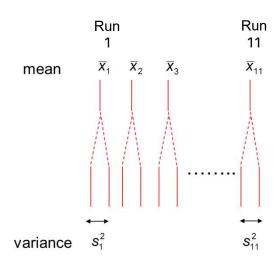
Comparing multiple groups of data

- Variation between duplicates (within-run)
- Variation between runs measurements made on different days



 Does the variation increase significantly when measurements are made on different days?

Within- and between-group effects Nested -design



Total variance has contributions from

- Random variation between duplicates (within-run)
- Variation between results obtained in different batches (between-run)

Analysis of variance (ANOVA)

- ANOVA separates different sources of variation
 - e.g. the within- and between-run variation in results
- Different sources of variation can be compared to determine whether they are significantly different
 - e.g. is the between-run variability in results significantly greater than the within-run variability?
- H₀ is that all samples are drawn from same population
- Method validation precision study
 - can be useful to know where variation in results is coming from
 - within-run vs. between-run

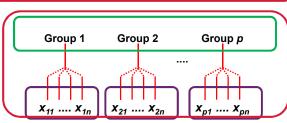
Anatomy of an ANOVA table

Source of variation	Sum of Squares (SS)	ν	Mean Square (MS)	F
Between groups	SS _b	<i>p</i> -1	$MS_b = SS_b/(p-1)$	MS _b /MS _w
Within group (Residuals)	SS _w	N-р	$MS_{\rm w} = SS_{\rm w}/(N-p)$	
Total	$SS_{tot} = SS_b + SS_w$	<i>N</i> -1		

No. groups = p

No. replicates = n

Total no. of results = np = N



Comparing sources of variation

Variance contributions compared as Mean Squares

$$Mean square (MS) = \frac{SS}{v}$$

- Mean squares compared using an F-test
 - is the between group MS significantly greater than the within group MS?

$$F = \frac{\textit{Between group MS}}{\textit{Within group MS}}$$

F>F_{crit} ⇒ differences between groups of data are significant compared to within group variation

ANOVA: Single factor – total phosphorus

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	459.8182	10	45.98182	5.620	0.004312	2.854
Within Groups	90.00	11	8.181818			
Total	549.8182	21				

F>*F*_{crit}, P<0.05 ⇒Significant difference between results obtained in different runs

Estimating precision from ANOVA

Repeatability, s_r (within-run precision)

$$s_r = \sqrt{\text{within group MS}}$$

· The combined precision has contributions from the within and between group variability

$$s_{between} = \sqrt{\frac{between\ group\ MS - within\ group\ MS}{n}}$$
 n = no. results per group $s_c = \sqrt{s_r^2 + s_{between}^2}$

- If groups produced by different analysts, different instruments, etc, s_c is the intermediate precision, s_l
- If groups produced by different labs, s_c is the reproducibility standard deviation, s_R

Precision calculation – total phosphorus

Repeatability, s_r

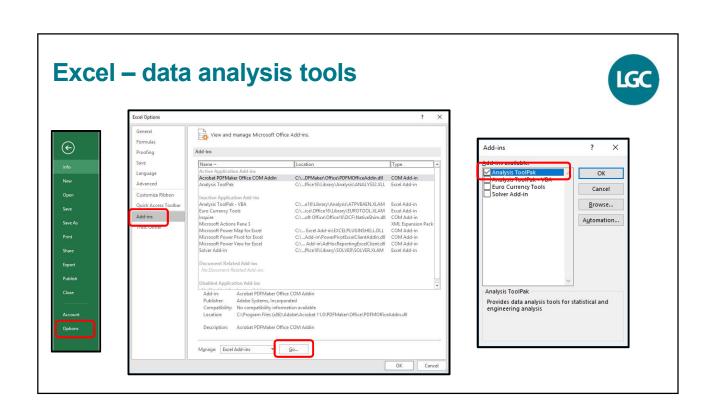
$$s_r = \sqrt{8.181818} = 2.86 \text{ mg/L}$$

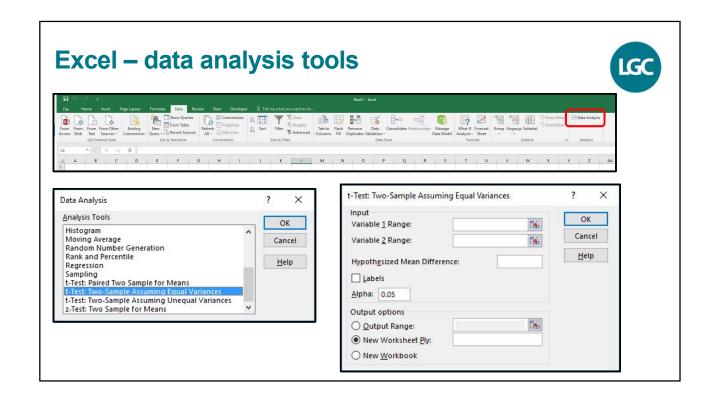
Between-run standard deviation

$$s_{between} = \sqrt{\frac{45.98182 - 8.181818}{2}} = 4.35 \text{ mg/L}$$

Intermediate precision, s_i

$$s_c = \sqrt{2.86^2 + 4.35^2} = 5.21 \text{ mg/L}$$





Any questions?

