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Foreword 

Uncertainty of measurement is the most important single parameter that describes the quality 
of measurements. This is because uncertainty fundamentally affects the decisions that are 
based upon the measurement result. Substantial progress has been made in devising 
procedures to estimate the uncertainty that originates in the analytical portion of the 
measurement, and guidance on these procedures is available [1]. However, a measurement 
almost invariably involves the process of taking a sample. This is because it is usually 
impossible to analyse the entire bulk of the material to be characterised (the sampling 

target). If the objective of the measurement is to estimate the value of the analyte 
concentration in a sampling target, then the uncertainty associated with the sampling process 
must inevitably contribute to the uncertainty associated with the reported result. It has become 
increasingly apparent that sampling is often the more important contribution to uncertainty 
and requires equally careful management and control. The uncertainty arising from the 
sampling process should therefore be evaluated. While existing guidance identifies sampling 
as a possible contribution to the uncertainty in a result, procedures for estimating the resulting 
uncertainty are not well developed and further, specific, guidance is required.  

Historically, measurement scientists have been primarily concerned with measurements made 
within laboratories, and the process of sampling has been conducted by, and the responsibility 
of, a different set of people who are often in separate organisations. The measurement 
scientist’s knowledge of the sampling process is then very limited. Conversely, the advent of 
in situ analytical techniques sometimes enables the measurement scientist to make 
measurements at the sampling site and in contact with the material to be sampled. Examples 
of this situation are process analysis within industrial production, and in situ measurements on 
contaminated land. The placing of the analytical sensor in these situations then constitutes the 
taking of a sample, and the measurement scientist becomes not only aware of, but responsible 
for, all stages of the measurement process, including the sampling. Such an awareness of the 
whole process is important, irrespective of the division of effort. Since analytical and 
sampling processes contribute to the uncertainty in the result, the uncertainty can only be 
estimated if there is an understanding of the complete process. Further, optimisation of the 
relative effort in sampling and analysis is only possible where sampling and analytical 
processes are both understood.  

If the different stages are the responsibility of different people, there needs to be good 
communication between all of the parties involved. Sampling planners and analytical 
scientists need to optimise the whole measurement procedure, and to devise a strategy to 
estimate the uncertainty. Both need to discuss the objectives of the measurements with the 
customer. All three parties need guidance from the appropriate regulator on how these 
estimates of uncertainty are to be acted upon, to ensure the reliability of the decisions based 
upon the measurements. To underpin these decisions, all the parties need reliable estimates of 
uncertainty, including that arising from sampling. Although no general guidance can replace 
expert advice in complex or critical cases, this Guide describes the methods required to fulfil 
the need for reliable estimates of uncertainty from sampling for most analytical measurement 
systems. 

cont./ … 
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Since the publication of the first edition of this Guide in 2007, there have been a number of 
important developments  that have been incorporated in this second edition. These include  

- the expression of uncertainty of measurement as an uncertainty factor (F
U) when the 

frequency distribution describing the sampling uncertainty is log-normal rather than 
normal, and the use of an ‘uncertainty factor’ in an uncertainty budget.  

- the use of an unbalanced design to estimate uncertainty more cost-effectively than can be 
achieved using the balanced ‘duplicate method’ design;  

- updates to definitions and references to reflect current international documents and 
literature, including applications of these methods to on-site and in situ measurements, 
made at both the macro and the micro scale. 
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Summary  

This Guide aims to describe various methods that can be used to estimate the uncertainty of 
measurement, particularly that arising from the processes of sampling and the physical 
preparation of samples. It takes a holistic view of the measurement process to include all of 
these steps as well as the analytical process, in the case where the measurand is defined in 
term of the value of the analyte concentration in the sampling target, rather than in just the 
sample delivered to the laboratory. The Guide begins by explaining the importance of 
knowing the total uncertainty in a measurement for making reliable interpretation of 
measurements, and judging their fitness for purpose. It covers the whole measurement 
process, defining each of the component steps, and describing the effects and errors that cause 
uncertainty in the final measurement.  

Two main approaches to the estimation of uncertainty from sampling are described. The 
empirical approach uses repeated sampling and analysis, under various conditions, to quantify 
the effects caused by factors such as the heterogeneity of the analyte in the sampling target 
and variations in the application of one or more sampling protocols, to quantify uncertainty 
(and usually some of its component parts). The modelling approach uses a predefined model 
that identifies each of the component parts of the uncertainty, making estimates of each 
component, and sums them in order to make an overall estimate. Models from sampling 
theory can sometimes be used in this approach to estimate some of the components from a 
knowledge of the characteristics of particulate constituents.  

Worked examples are given of each of these approaches, across a range of different 
application areas. These include investigations of the environment (of soil and water), of food 
(at growing and processing) and of animal feed. The estimates of the expanded uncertainty of 
measurement range from a few per cent up to more than 80% relative to the measurand. The 
contribution of the sampling is occasionally small but is often dominant (may exceed 90% of 
the measurement uncertainty expressed as variance). This suggests an increased proportion of 
the expenditure needs to be aimed at the sampling, rather than the chemical analysis, if the 
total uncertainty needs to be reduced in order to achieve fitness for purpose. 

Management issues addressed include the responsibility of the quality of the whole 
measurement process, which needs to include the sampling procedure. Guidance is given on 
the selection of the most appropriate approach for any application, and whether one initial 
validation of the system is sufficient, or whether there is a need for ongoing monitoring of the 
uncertainty from sampling using quality control of sampling. The extra cost of estimating 
uncertainty is also considered in relation to the cost savings that can be made by knowing the 
uncertainty of measurement more reliably. 

Such a Guide can never be fully comprehensive, and although there are appendices with 
details of some of the statistical techniques employed and sources of more detailed advice, 
there will often be a need for expert advice in more complex situations. This Guide aims to be 
a useful introduction to this subject, but we hope it will also stimulate further research into 
improved methods of uncertainty estimation.  
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PART 1 – Introduction and scope 

1 Introduction 

1.1 Rationale for the Guide 

The main purpose of measurement is to enable decisions to be made. The reliability of these 
decisions depends on knowing the uncertainty of the measurement results. If the uncertainty 
of measurements is underestimated, for example because the sampling is not taken into 
account, then erroneous decisions may be made that can have large financial consequences. 
The fitness for purpose of measurement results can only be judged by having reliable 
estimates of their uncertainty. For this reason it is essential that effective procedures are 
available for estimating the uncertainties arising from all parts of the measurement process. 
These must include uncertainties arising from any relevant sampling and physical preparation. 
Judgements on whether the analytical contribution to the uncertainty is acceptable can only be 
made with knowledge of the uncertainty originating in the rest of the measurement procedure. 

1.2 Aim of the Guide 

1.2.1 The aim of this Guide is to explain the rationale, and practical application, of the 
methods available for the estimation of uncertainty that includes the contribution from 
sampling. The Guide does not aim to recommend individual sampling protocols, which are 
often prescribed in other documents or regulations, but rather to consider the measurement 
uncertainty generated by whatever protocol is employed.  

1.2.2 The Guide also aims to explain the importance of sampling to the overall uncertainty 
budget, and hence to the reliability of the consequent decisions made using the measurements. 
As well as explaining how to estimate the uncertainty, the Guide will explain the justification 
for including sampling in the overall management of the measurement process. 

1.2.3 Unlike the assumption that is often made for estimates of uncertainty for an 
analytical method, an estimate for one sampling protocol for one batch of material should not 
be assumed as automatically applicable to any subsequent batch of material. For example, 
depending on the sampling target, the degree of heterogeneity (i.e. inhomogeneity) may have 
changed substantially. There will be a need, therefore, for routine monitoring of key 
parameters of sampling quality to examine and update estimates of uncertainty for subsequent 
batches. 

1.3 Application to judging fitness for purpose 

One of the main benefits of knowing the uncertainty of a measurement is to enable a 
stakeholder to judge its fitness for any particular purpose. A proper understanding of 
uncertainty from sampling should therefore be embedded in the broader perspective of 
fitness for purpose. This is important for two reasons. Firstly, it ensures that the estimate of 
uncertainty of each measurement is realistic when compared with the optimal value of 
uncertainty required to give reliable decisions. Secondly, given this level of uncertainty that is 
required to be fit for purpose, it is necessary to distribute effort (or expenditure) between the 
sampling and the analytical aspects of the measurement process in order to obtain the required 
uncertainty most economically. These ideas are developed further, and a quantitative 
approach to judging fitness for purpose by balancing uncertainty against cost is introduced, in 
Section 16. 
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1.4 Intended audience for the Guide 

This Guide is intended primarily for specialists such as sampling planners and for analytical 
chemists who need to estimate the uncertainty associated with their measurement results. 
Other stakeholders should seek specialist advice for particular applications. 

1.5 Relationship of this Guide to other documents 

1.5.1 Current practice in the estimation of uncertainty for a broad range of measurements 
follows the ‘Guide to the Expression of Uncertainty in Measurement’ (‘the GUM’) [2], 
published in 2008 by ISO in collaboration with BIPM, IEC, IFCC, IUPAC, IUPAP and 
OIML. The GUM sets out the concepts required, established the general principles, and 
provided a procedure applicable to cases where an adequate model of the measurement 
process is available. The application of this approach to chemical analysis was described in 
1995 in a Eurachem Guide for ‘Quantifying Uncertainty in Analytical Measurement’ [3], and 
broadened to include the use of validation and method performance data in a third edition in 
2012 [1]. Other useful contributions to the practical estimation of uncertainty of analytical 
measurements using collaborative study data have been made by the Analytical Methods 
Committee of the Royal Society of Chemistry in 1995 [4], and by ISO TC/69 in 2017 [5]. 
This Guide on sampling is consistent with the general principles established in the GUM. 

1.5.2 Sampling theory has developed largely independently of analytical chemistry and 
chemical metrology. Sampling quality has generally been addressed in sampling theory by the 
selection of a ‘correct’ sampling protocol, appropriate validation, and training of sampling 
personnel (i.e. samplers) to ensure that this protocol is applied correctly [6]. It is then 
assumed that the samples will be representative and unbiased, and the variance will be that 
predicted by the model.  

1.5.3 An alternative approach is to estimate the uncertainty of sampling for typical 
materials, or for sampling targets, during validation of the sampling protocol, and to confirm 
compliance in practice using ongoing quality control. This is more consistent with procedures 
already in place for the rest of the measurement process. Interestingly, the quality of sampling 
is only quantifiable through the measurements that are made upon the resultant samples.  

1.5.4 Sampling protocols have been written to describe the recommended procedure for 
the sampling of innumerable types of material and for many different chemical components. 
These protocols are sometimes specified in regulation or in international agreementsa [7]. 
These procedures rarely identify the relative contributions of sampling and chemical analysis 
to the combined uncertainty.b  

1.5.5 There is accordingly a range of prior literature on the theory and practice of 
sampling. As explained in Section 1.2.1, this Guide therefore does not seek to propose further 
sampling protocols but rather to provide methodologies to quantify the uncertainty that arises 
when a given protocol is used. 

1.5.6 A handbook describing procedures for the estimation of uncertainty from sampling, 
derived from this Guide but with further case studies, has been prepared by the Nordtest 
group [8]. 

                                                 
a The ‘acceptance sampling procedures’ are applied to the sampling of a wide range of materials [7]. 
b Some concepts from sampling theory can be usefully adapted for estimation of uncertainty of measurement 
(Section 10.2). 
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1.6 Using the Guide 

1.6.1 This document summarises the concepts necessary for understanding uncertainty in 
sampling, and provides procedures that allow their practical implementation. The Guide 
additionally covers issues related to management, quality assurance and reporting of results 
with uncertainty. The scope and intended field of application are set out in Section 2, which 
also summarises the approaches covered. Terminology is discussed in Section 3, and key 
terms defined in Appendix B. 

1.6.2 Fundamental concepts are covered in Sections 4 and 5. An overview of the 
measurement process is provided in Section 4. This includes an explanation of the sampling 
terminology used, and indicates which steps in the process are considered in detail in this 
Guide. Measurement uncertainty and its sources are discussed further in Section 5.  

1.6.3 Sections 6 to 10 describe methodologies for the estimation of uncertainty, with a 
discussion of the merits of the various options. The two broad approaches available are 
summarised in Section 6, and covered in detail in Sections 9 and 10 respectively. The intent is 
to provide a range of options that may be applied, rather than to specify any particular 
approach.  

1.6.4 Management and quality issues are addressed in Sections 11 to 13. These include a 
very brief discussion of responsibilities for quality in sampling (Section 11) before discussing 
the selection of uncertainty estimation approach in Section 12. The use of sampling quality 
control to monitor sampling performance is covered in Section 13. Reporting and use of 
uncertainty, and its effect on the reliability of decisions, are discussed in Section 14. Cost is 
an important factor and selection of the most cost-effective and appropriate method of 
estimation is explained in Section 15. Knowing the value of the uncertainty helps to judge the 
fitness for purpose of the measurement as a whole, and its component parts, and this is 
discussed in Section 16. 

1.6.5 A range of examples, a detailed glossary of terms and definitions used in this Guide, 
some important statistical procedures and experimental designs, and a discussion of 
improving sampling uncertainty using predictions from sampling theory are provided as 
appendices. 

2 Scope and field of application  

2.1 The principles of this Guide are applicable to the estimation of uncertainty from the 
full range of materials that are subject to analytical measurement (e.g. gaseous, liquid and 
solid). These include environmental materials (e.g. rock, soil, water, air, waste and biota), 
foods, industrial materials (e.g. raw materials, process intermediaries and products), forensic 
materials and pharmaceuticals. This approach is applicable to sampling by any protocol, 
whether it uses single or composite samples, or single or multiple determinations. 

2.2 The Guide describes the estimation of uncertainty using i) replicated measurement 
and sampling (the ‘empirical approach’) and ii) modelling based on identified influence 
quantities and theoretical considerations (the ‘modelling approach’). 

2.3 The use of uncertainty estimates in the assessment of fitness for purpose and in the 
optimisation of effort among individual parts of the measurement process is covered. Methods 
of assessing fitness for purpose that are described include those based upon percentage of 
total variance and others based on cost-benefit analysis.
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2.4 Although the general principles of this Guide apply, it does not specifically discuss 
microbiological sampling. Nor does it discuss the estimation of uncertainty in spatial or 
temporal information such as the location or size of areas of high analyte concentration. 

3 Terminology 

3.1 The precise definitions of many of the terms used in this Guide vary depending on 
the area of application. A full listing of terms and their different definitions is given in 
Appendix B. In this Guide, normative definitions of each term have been selected that are as 
generally applicable as possible to all sectors of application. The terms used are listed in 
Appendix B and in bold on first use in the text. 

3.2 Analytical science is generally concerned with composition, so the measurand is 
usually related to the amount or proportion of an analyte in a mixture. This can be expressed 
in several different ways, including (for example) mass fraction, volume fraction, amount of 
substance (mole) fraction, and mass or amount-of-substance per unit volume. Unfortunately, 
there is no widely accepted general term that covers all of these concepts. In this guide, 
therefore, the term ‘concentration’, when unqualified, should be understood as applying to 
any of these different measures of proportion or amount. When the text requires a restricted 
interpretation, ‘concentration’ is qualified (for example as ‘amount of substance 
concentration’) or replaced with a more specific term (for example, ‘mass fraction’). 
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PART 2 – Fundamental concepts 

4 Sampling in the measurement process 

Figure 1: Schematic diagram of the typical measurement process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure shows a complete measurement process, starting with primary sampling and ending in the analytical 
determination. There are many intermediary steps, such as transportation and preservation of samples, not all of 
which are always present. Each step gives rise to a contribution towards the uncertainty of measurement. This 
Guide concentrates on the process steps of sampling and physical sample preparation (shaded boxes), as the 
last step is well covered in previous guidance [1]. Notice that two of the sampling steps occur within the 
laboratory (light grey) and are frequently considered to be part of the analytical process. For definitions of terms 
see Appendix B. 

A sampling target is the portion of material, at a particular time, that the sample (and therefore 
the measurement result) is intended to represent. The sampling target needs to be defined 
prior to the design of the sampling plan. It may be defined by regulation, such as the whole of 
a batch, lot or consignment. If the properties and characteristics (e.g. analyte concentration) of 
the material in a certain area, or time period, are of interest and must be known, then it can be 
considered a sampling target. When the composition of a whole batch is required (e.g. of a 
food material), then the whole batch constitutes the target. When the spatial (or temporal) 

 

   

Sampling 

Physical sample 
preparation 

Analysis 

Sampling Target Collection of a single sample, or several  
increments combined into composite sample  

Primary Sample Comminution and/or splitting 

Sub-sample Further comminution and/or splitting 

Laboratory 
sample 

Physical preparation, e.g. drying, sieving, 
milling, splitting, homogenisation 

Test sample Selection of test portion for chemical 
treatment preceding chemical analysis 

Test portion Chemical treatment leading to analytical 
determination 

Test solution Determination of analyte concentration 

Process step Form of 
material 

Description of process step 
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variation of concentration is required (e.g. in finding ‘hot spots’ within a contaminated 
material), then each location where the concentration is required will be a separate sampling 
target. Any one sampling target will ultimately generate one reported measurement result and 
an uncertainty. 

Primary samples are often made up of a number of increments, which are combined to form 
a composite sample before a measurement is made. It is the uncertainty on this single 
measurement value, made on this composite sample, and caused by all of the preparatory 
steps, that is required. The value of this uncertainty will often be affected by the number of 
increments that are taken. This contrasts with the situation when several distinct primary 
samples (n) are taken from different parts of the sampling target, and measured separately. If 
the composition of the sampling target is calculated by taking the mean value of these 
separate measurements, then the uncertainty on the mean value is calculated using the 
standard error of the mean (s/n). This is not the same as the uncertainty on the single 
measurement, the estimation of which is the objective of this Guide. 

4.1 The whole process of measurement (Figure 1) typically begins with the taking of the 
primary sample from a sampling target. The resulting sample goes through one or more of a 
series of steps prior to the analytical determination. All steps contribute to uncertainty in the 
final result, when the analyte value required (i.e. measurand value or true value), is 
expressed in terms of the analyte concentration in the sampling target. Guidance already 
exists on the estimation of the analytical steps of the measurement process [1]. This will 
certainly include the selection of the test portion, the chemical treatment preceding 
measurement and the analytical determination, but may also include the physical preparation 
of the laboratory sample by means such as drying, sieving, milling, splitting and 
homogenisation.  

4.2 In common practice, all the various portions of material in the second column of 
Figure 1 are often referred to simply as a ‘sample’. It is clearly important to differentiate them 
carefully in discussion, especially those considered particularly in this Guide (in shaded boxes 
on Figure 1). This is discussed in more detail in Section 5.2. 

4.3 Methods described in the Guide will help to identify the dominant source of the 
uncertainty, such as the sampling rather than the chemical analysis, but will not necessarily 
explain the cause. However, heterogeneity within the sampling target, either spatial or 
temporal, is known to be a significant cause of uncertainty in many circumstances. Separate 
studies would be needed to characterise the variability that contributes to the uncertainty. For 
the purpose of this Guide, heterogeneity within the sampling target is treated as just one cause 
of uncertainty in the final measurement. This is the case, whatever actions are taken to 
minimise the effects of the heterogeneity by the application of any particular sampling 
protocol. 

5 Uncertainty of measurement 

5.1 Definition of uncertainty of measurement 

5.1.1 Uncertainty of measurement, or measurement uncertainty (MU), is defined in 
metrological terminology [2] as: 

Parameter, associated with the result of a measurement, that characterises the dispersion of the 

values that could reasonably be attributed to the measurand. 

The definition includes several important features, which are discussed in the following 
paragraphs.  
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5.1.2 The ‘parameter’ may be, for example, a range, a standard deviation, an interval (like 
a confidence interval) or half-interval (u is a statement of a half-interval) or other measure of 
dispersion such as a relative standard deviation. Note that when MU is expressed as a 
standard deviation, the parameter is known as ‘standard uncertainty’, usually given the 
symbol u. Other forms of expression are considered in Section 14. 

5.1.3 Uncertainty is ‘associated with’ each measurement result. A complete measurement 
result typically includes an indication of the uncertainty in the form xU, where x is the 
measurement result and U an indication of the uncertainty (it will be seen that the symbol U 
has a special meaning, in this Guide; it indicates an ‘expanded uncertainty’, which will be 
discussed further in Section 14). This form of expressing a result is an indication to the end-
user of the result that, with reasonable confidence, the result implies that the value of the 
measurand is within this interval. 

5.1.4 The measurand is simply a quantity, such as a length, a mass, or a concentration of a 
substance, which is being measured. The term ‘value of the measurand’ is closely related to 
the traditional concept of ‘true value’ in classical statistical terminology. From this alternative 
viewpoint ‘uncertainty’ has historically been definedc as:  

An estimate attached to a test result which characterises the range of values within which the true 

value is asserted to lie 

This definition (which will be referred to as the statistical definition) has the advantage of 
being easier to explain to decision makers, who often recognise the phrase ‘true value’ as the 
value of interest for their decision. It has the disadvantage that the true value itself can never 
be known and this generally requires further explanation. 

5.1.5 The metrological definition asserts that uncertainty expresses ‘the dispersion of the 
values that could reasonably be attributed to the measurand’. This is a particularly important 
phrase. It indicates that although the uncertainty is associated with a measurement result, the 
range quoted must relate to the possible range of values for the measurand. For example, the 
measurand could be the total mass of gold in a geological deposit. Such a range is quite 
different from a statement of precision, which would describe the range of results that might 
be observed if the measurement was repeated. In requesting information about ‘where the 
measurand value might be’, this definition of uncertainty implicitly requires the measurement 
scientist to consider all the effects that might influence the measurement result. These effects 
obviously include the causes of random variation from one measurement to the next over the 
measurement timescale. But it is also essential to consider sources of bias during the 
experiment, and very often, these generate larger effects than can be observed by repeated 
measurement alone. That is, measurement uncertainty automatically asks for a range that 
includes an allowance for both random and systematic effects.  

5.1.6 To consider a simple analytical example, a simple measurement of concentration in a 
solid will typically involve extraction of material, weighing, volumetric operations and 
perhaps spectrometry or chromatography. Repeated measurement will show a spread of 
values due to random variations in these operations. But all analysts know that extraction is 
rarely complete, and, for a given material, that failure to extract material will lead to a 
consistently low result. While good analytical practice always attempts to reduce such effects 
to insignificance, some bias will remain. In expressing the uncertainty about the value of the 
measurand, then, the analyst must take into account the reasonable possibility of bias from 

                                                 
c ISO 3534-1: 1993 Statistics – Vocabulary and Symbols, International Organization for Standardization, Geneva  
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such causes. (Usually, this is done by considering such information as the range of analyte 
recoveries observed on reference materials or from spiking experiments.) 

5.1.7 The same considerations apply in the case of sampling. It is well known that different 
samples taken from a bulk material will often show real variation in value, which is clear 
from repeated measurement. It is also well known that sampling may be biased, for example 
by differential removal of materials, inappropriate timing of sampling where temporal 
fluctuations occur, or by access restrictions. These effects will influence the relationship 
between the value of the measurand and the result that is observed. While good practice in 
sampling is intended to reduce these effects to insignificance, a careful assessment of 
uncertainty always considers the possibility of residual systematic effects. 

5.1.8 Current guidance on measurement uncertainty [2] makes it clear that uncertainty of 
measurement (Section 2.2 of reference [2]) is not intended to allow for ‘gross error’ or 
‘blunders’ (Section 3.4.7 of reference [2]). This would preclude, for example, mistakes caused 
by transcription errors or gross misuses of the measurement protocol. Sampling can, however, 
produce high levels of uncertainty (e.g. 80% of the concentration value), simply through the 
routine application of an accepted measurement protocol to a highly heterogeneous material. 
Even when procedures are nominally correct, there will also be slight variations in the actual 
procedures due to the ambiguity in the measurement protocols, and the minor adaptations that 
are made to protocols in real-world sampling situations. Whether these high levels of 
uncertainty lead to unacceptable levels of reliability in the decisions that are based upon them, 
depends upon a rigorous evaluation of fitness for purpose (see Section 16). 

5.2 Specification of measurand  

5.2.1 When an end-user is presented with a concentration result quoted for a bulk sample 
in the form ‘xU’, they will very naturally interpret that interval as including the range of 
values attributable to the concentration in the sampling target (e.g. a batch of material). 
Implicit in this view is the idea that the measurand is ‘the concentration (of the analyte) in the 
batch of material’, and that the uncertainty includes any necessary allowance for 
heterogeneity in the bulk. The analyst, by contrast, might refer to ‘the concentration in the 
laboratory sample analysed’, implicitly ruling out the variation between laboratory samples. 
Clearly, one viewpoint includes the effects of sampling, while the other does not. The effect 
on the uncertainty can, of course, be very considerable. In metrological terms, this distinction 
arises because the two views are considering different measurands. One is considering 
‘concentration in the sampling target’, the other ‘concentration in the laboratory sample’. 
Another example might be ‘contaminant concentration at a factory outlet at the time of 
sampling’, compared to ‘the average contaminant concentration over a year’.  

5.2.2 These ambiguities in interpretation can be avoided only by careful specification of 
the measurand. It is clearly necessary to state the quantity (mass, length, concentration etc.). It 
is equally important to be clear on the scope of the measurement, by including information on 
factors such as the time, location, or population to which the measurement result will be 
assumed to apply. Some particular instances of measurand specification and their implications 
for uncertainty estimation are discussed below.  

It is never possible to avoid all ambiguity in implementing the wording of the sampling 
protocol. 

5.2.3 When a composite sample is taken by the combination of several increments from 
across a sampling target, and analysed as a single primary sample, that single determination of 
analyte concentration provides an estimate of the value of the measurand (i.e. the average 
composition of the target), as discussed briefly in Section 4. The uncertainty on this single 
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value reflects the uncertainty in the estimate of the measurand value. In contrast, if several 
independent primary samples are taken from the target, each analysed once, and the mean 
value calculated, this mean value will also be an estimate of the value of the measurand. 
However, the uncertainty will not be that of the measurement (expressed as standard 
deviation, s), but the standard error of the mean value (expressed as s/n). This later 
uncertainty on the mean can be reduced by taking more primary samples,d whereas the 
uncertainty on the measurement cannot. 

5.3 Error, precision and uncertainty 

5.3.1 Uncertainty is related to other concepts, such as accuracy, error, trueness, bias and 
precision. Other guidance discusses the relationships in some detail [1,2]. However, it is 
worth repeating some of the important differences: 

 Uncertainty is a range of values attributable on the basis of the measurement result and 
other known effects, whereas error is defined as a difference between a single result and a 
‘true (or reference) value’. ‘Bias’ can be thought of as average error. 

 Uncertainty includes allowances for all effects that may influence a result (i.e. both 
random and systematic errors); precision only includes the effects that vary during the 
observations (i.e. only some random errors). 

 Uncertainty is valid for correct application of measurement and sampling procedures, but, 
as noted in Section 5.1.8, it is not intended to make allowance for gross operator error. 

5.4 Sampling and physical preparation as sources of uncertainty of measurement  

5.4.1 The act of taking a sample introduces uncertainty into the reported measurement 
result wherever the objective of the measurement is defined in terms of the analyte 
concentration in the sampling target and not simply in the laboratory sample.  

5.4.2 Sampling protocols are never perfect in that they can never describe the action 
required by the sampler for every possible eventuality that may arise in the real world in 
which sampling occurs. The location in space (or time) for the taking of a sample is rarely 
specified exactly (e.g. to the nearest millimetre or second). The sampler has to make such 
decisions (ideally on objective criteria), but as heterogeneity is inevitable (in space or time) 
such decisions will affect the estimated concentration. An appreciation of these sources of 
uncertainty is important in the design and implementation of methods for the estimation of 
uncertainty. When duplicate samples are taken, for example, taking them at exactly the same 
place and time may not reflect the uncertainty of the measurement that really exists. This will 
be discussed further in the description of methods of estimation (Sections 6 to 10), and in the 
various worked examples (Appendix A).  

5.4.3 Heterogeneity always gives rise to uncertainty. If the sampling target were perfectly 
homogeneous then this contribution would be zero, but nearly all materials are heterogeneous 
to some extent at some scale. If the test portion is a few micrograms, then nearly all material 
will be heterogeneous and the sampling step will contribute to the uncertainty in the 
measurement of an analyte concentration. Heterogeneity can be quantified in a separate 
experiment, but if the aim is to estimate the analyte concentration in the larger sampling 
target, then this heterogeneity is just one cause of measurement uncertainty (as discussed in 
Sections 4.3 and 5.6).  

                                                 
d Assuming that the samples are random and independent, and assuming zero bias. 
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5.4.4 Similar arguments can be made for the uncertainty that arises in the processes of 
physical preparation (e.g. transportation, preservation, comminution, splitting, drying, sieving, 
homogenisation) that happen after the act of sampling and before any chemical treatment of 
the test sample (Figure 1). Each step can introduce errors from a range of mechanisms, such 
as loss of analyte, loss of fine particles, or contamination from equipment or previous 
samples. The methods employed, and training given, should aim to reduce these errors to a 
minimum. In addition, however, procedures are required to estimate the uncertainty that all of 
these steps, when applied in practice, generate in the final measurement value. 

5.5 Sources of uncertainty  

5.5.1 Uncertainty arises from a variety of sources, and these have been categorised in 
different ways. For example, the Eurachem Uncertainty Guide identifies eight major 
categories of effects that are important in estimating uncertainty [1], of which the first two are 
sampling and sample preparation. Specific effects identifiable in these two categories are 
shown in Table 1. A modelling approach might use these effects as the basis for a 
mathematical model. Alternatively, sampling theory identifies eight distinct sources of error 
in sampling (Table 2); each of these can also be reduced to a variety of causal factors, which 
in turn can be used in various modelling approaches. A further alternative approach is to 
consider all of the steps in the measurement process (Figure 1) as sources of uncertainty that 
make some contribution to the uncertainty of the final measurement. In this Guide, the 
simplest study designs treat uncertainty as arising from four classes of effect (Table 3), and 
the classes are treated as sources of uncertainty in a simple statistical model; this is consistent 
with the grouping of uncertainty sources explicitly suggested in reference [1]. In its simplest 
form, this categorisation can be reduced to two categories: ‘sampling uncertainty’ and 
‘analytical uncertainty’. 

5.5.2 The important feature of each of these different classifications is that each is intended 
to ensure that, however they are grouped and evaluated, all practically important effects are 
taken into account in estimating the uncertainty. As long as this requirement is met, any 
categorisation scheme may be applied to the estimation of uncertainty. The categorisation 
schemes listed in Table 2 and Table 3 cover all practically important effects. 

5.5.3 Each different categorisation of sources will generally lead to a different study 
design, and very often to fundamentally different methods of evaluation of uncertainty 
contributions. This results in substantially independent estimates of uncertainty via different 
approaches. As noted elsewhere [5], grossly different estimates of uncertainty for the same 
system suggest that at least one study methodology is in error. This forms the basis of a check 
on the validity of an approach. Where practicable, therefore, comparison of uncertainty 
estimates arising from independent evaluation approaches is recommended as a means of 
validating particular estimates and of assessing the validity of different approaches.  

5.6 Heterogeneity as a source of uncertainty 

5.6.1 IUPAC currently define both homogeneity and heterogeneity as ‘The degree to 
which a property or constituent is uniformly distributed throughout a quantity of material.’     
([9] see Appendix B for definitions). So defined, heterogeneity is among the most important 
factors contributing to uncertainty associated with sampling. Increments from different 
locations in the sampling target will have different concentrations of analyte in a 
heterogeneous material and there will be a sample-to-sample variation in analyte 
concentration – usually visible as a contribution to the observed variation of results. In 
general, the exact dependence of concentration on location is unknown, so no correction can 
be made. This results in uncertainty in any given result or, in general, any average of such 
results. 
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5.6.2 IUPAC note, as an addendum to the above definition [9], that ‘The degree of 
heterogeneity (the opposite of homogeneity) is the determining factor of sampling error.’ The 
note is a good indication of the importance of heterogeneity in sampling. There are other 
sources of error and uncertainty in the general operation of sampling; for example, cross-
contamination and imperfect stabilisation of samples, either of which can result in (unknown) 
bias or additional variability. Yet heterogeneity and its effects – such as random variability 
and selection bias – remain the largest problem in properly managed sampling and will 
generally be the most significant source of uncertainty.  

5.6.3 An alternative definition of homogeneity is sometimes used for particulate material, 
which, if it consists of particles of different materials, cannot ever be ‘homogeneous’ in the 
sense defined by IUPAC. In this context, a mixture in which the probability of selection of 
different types of particle is constant throughout the sampling target may be termed 
‘homogeneous’ to denote that the expected concentration would be the same in a sample 
taken at any point in the material. Even here, however, it must be recognised that the 
particulate nature of the material leads to sample-to-sample variation due to slightly different 
composition of the increments actually taken; heterogeneity, as defined by IUPAC, still has 
an effect under these circumstances, and consequently still contributes to the uncertainty. 
 

5.7 Variation of uncertainty with concentration level 

Before calculating sampling uncertainty as described in Section 6 the variation of uncertainty 
with concentration level should be considered. If there is a wide concentration range, the 
uncertainty (expressed in concentration units) may increase with concentration, and the 
calculations are preferably performed on log-transformed data. Expressing uncertainty in 
relative units is not appropriate when the analyte concentration is within a factor of ten of the 
detection limit. Where there are a large number of duplicated measurements (e.g. > 50), it 
may be possible to fit a model of the sampling uncertainty as a function of concentration [10, 
11, 12].  In Examples A1 and A4 the concentration range is narrow, and the calculations are 
performed on the data in concentration units i.e. no transformation of data is performed. In 
Example A2 the uncertainty is calculated using data both in concentration units, and after log-
transformation, and the results are compared. In Example A3 the calculations are performed 
in absolute units, and for Example A5 in relative units i.e. as percentages. In reality it is often 
difficult to know if and how the uncertainty varies with the concentration and which method 
of estimation is, therefore, most appropriate. 
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Table 1: Some sources of uncertainty in sampling and sample preparation, adapted 

from reference [1]  

Sampling Sample preparation 

- Heterogeneity (or inhomogeneity) 

- Effects of specific sampling strategy (e.g. 
random, stratified random, proportional 
etc.) 

- Effects of movement of bulk medium 
(particularly density selection) 

- Physical state of bulk (solid, liquid, gas) 

- Temperature and pressure effects  

- Effects of sampling process on 
composition (e.g. differential adsorption 
in sampling system) 

- Transportation and preservation of 
sample 

- Homogenisation and/or sub-sampling 
effects  

- Drying  

- Milling  

- Dissolution  

- Extraction  

- Contamination  

- Derivatisation (chemical effects) 

- Dilution errors  

- (Pre-)Concentration  

- Speciation effects 
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Table 2: Sources of sampling uncertainty in sampling theory* 

Source Description 

Fundamental sampling error (FSE) A result of the constitutional heterogeneity 
(the particles being chemically or 
physically different) 

Grouping and segregation error (GSE) A result of the distributional heterogeneity 

Long-range point selection error (PSE1) Trends across space or over time 

Periodic point selection error (PSE2) Periodic levels across space or over time 

Increment delimitation error (IDE) Identifying the correct sample to take. 
Considers the volume boundaries of a 
correct sampling device 

Increment extraction error (IXE) Removing the intended sample. Considers 
the shape of the sampling device cutting 
edges 

Increment and sample preparation error 
(IPE) 

Contamination (extraneous material in 
sample): 
Losses (adsorption, condensation, 
precipitation etc.): 
Alteration of chemical composition 
(preservation): 
Alteration of physical composition 
(agglomeration, breaking of particles, 
moisture etc.):  
**Involuntary mistakes (mixed sample 
numbers, lack of knowledge, negligence): 
 **Deliberate faults (salting of gold ores, 
deliberate errors in increment delimitation, 
forgery etc.) 

Weighting error (SWE) The result of errors in assigning weights to 
different parts of an unequal composite 
sample 

*This classification follows that of Gy [13] and others (discussed further in Section 10). 
** Excluded from uncertainty estimates as gross errors [2].  

Table 3: Uncertainty contributions in the empirical approach 

Process Effect class* 

Random (precision) Systematic (bias) 

Analysis Analytical variability 
(combined contribution of 
random effects) 

Analytical bias (combined effect 
of bias sources) 

Sampling Sampling variability 
(dominated by heterogeneity 
and operator variations) 

Sampling bias  
(combined effect of selection bias, 
operator bias etc.) 

*The differentiation of random from systematic effects can depend on the context. A systematic effect in 
measurements by one organisation (e.g. analytical bias) can also be considered a random effect when viewed in 
the context of the consensus value from an inter-organisational proficiency test. 
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PART 3 – Estimation of measurement uncertainty including 

sampling 

6 Approaches to uncertainty estimation 

6.1 There are two broad approaches to the estimation of uncertainty. One of them, 
described as ‘empirical’, ‘experimental’, ‘retrospective’, or ‘top-down’, uses some level of 
replication of the whole measurement procedure to give a direct estimate of the uncertainty 
for the final result of the measurement. This approach is called the ‘empirical’ approach in 
this Guide. The second, variously described as ‘modelling’, ‘theoretical’, ‘predictive’ or 
‘bottom-up’, aims to quantify all of the sources of uncertainty individually, and then uses a 
model to combine them. It will accordingly be referred to as the ‘modelling’ approach. These 
approaches are not mutually exclusive. The empirical method can be adapted to estimate 
contributions to uncertainty from one or more effects or classes of effect. Both approaches can 
usefully be employed together to study the same measurement system, if required. The 
applicability of the two approaches varies between the different materials to be sampled.  

6.2 The approach taken in this Guide is to describe in detail the empirical approach, 
which has the widest applicability to the broadest range of measurement systems and 
applications (e.g. gaseous, liquid and solid). Modelling approaches are described for 
particular situations to which they apply (e.g. particulate solids). Advice will also be given on 
how a combination of these different approaches can be used to give more reliable and cost-
effective estimates of uncertainty in a range of measurement systems. This dual approach is 
intended to enable a user of the Guide to select the most appropriate method of uncertainty 
estimation for their particular situation. (Section 1 provides guidance on selection of the 
approach.)  

6.3 Reference [5] notes that the modelling approaches and the type of empirical study 
used in collaborative trial are extremes of a continuum:  

Note, however, that observed repeatability or some other precision estimate is very often taken 

as a separate contribution to uncertainty, even in the GUM approach. Similarly, individual 

effects are usually at least checked for significance or quantified prior to assessing 

reproducibility. Practical uncertainty evaluation therefore often uses some elements of both 

extremes. 

 

In referring to either extreme, therefore, it is important to be aware that these are extremes and 
that many practical estimates involve elements of both approaches.  

6.4 The overall objective of any approach is to obtain a sufficiently reliable estimate of 
the overall uncertainty of measurement. This need not necessarily require all of the individual 
sources of uncertainty to be quantified, only that the combined effect be assessed. If, however, 
the overall level of uncertainty is found to be unacceptable (i.e. the measurements are not fit 
for purpose) then action must be taken to reduce the uncertainty. Alternatively, the 
uncertainty may be unnecessarily small, in which case there may be justification for 
increasing the analytical uncertainty, and thereby decreasing the cost of analysis. Methods for 
modifying uncertainty are discussed in Appendix E. At this stage, however, it is essential to 
have information on which general part of the measurement procedure is causing the 
dominant contribution to the overall uncertainty, and it may then be necessary to evaluate 
individual effects. The advantage of detailed early study is that this information is already 
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available; the disadvantage is that it is costly to obtain and may prove unnecessary if 
uncertainty is acceptable. Planners should accordingly consider the level of detail required in 
an uncertainty estimate, taking account of the probability of requiring detailed information for 
further development.  

7 The measurand 

7.1 In the following discussion, it is assumed that the measurand is an average value 
representing the composition of the whole sampling target, and that the measurand is to be 
estimated through a process of sampling and analysis. This relates to the specification of the 
measurand (Section 5.2) and the definition of the sampling target (Section 4.1). 

8 General conduct of studies of sampling uncertainty 

8.1 Analytical work should be undertaken under an appropriate quality system, including 
validated analytical methods, proficiency testing, internal quality control and external 
assessment where appropriate. Validation procedures should include all the steps normally 
undertaken within the laboratory (including any sub-sampling of test samples), and should 
include checks on bias using certified reference materials, or other methods, for the estimation 
of analytical bias [14]. Note that the uncertainty estimation methods described in this Guide 
can also be applied to the estimation of uncertainties associated with sub-sampling. 

8.2 Laboratories undertaking the chemical analysis should report the concentration 
estimates exactly as found; in particular, values must not be censored, truncated or reported as 
‘less than’ a reporting limit, whether below the limit of detection (LOD) or below zero. 
Failing to report negative or sub-LOD observations will result in an underestimate of the 
uncertainty. 

9 Empirical approach 

9.1 Overview 

9.1.1 The empirical (‘top-down’) approach is intended to obtain a reliable estimate of the 
uncertainty, without necessarily knowing any of the sources individually. It relies on overall 
precision estimates from either in-house or inter-organisational measurement trials. It is 
possible to describe the general type of source, such as random or systematic effects, and to 
subdivide these as those arising from the sampling process or the analytical process. Estimates 
of the magnitude of each of these effects can be made separately from the properties of the 
measurement methods, such as sampling precision (for random effects arising from 
sampling) or analytical bias (for systematic effects arising from chemical analysis). These 
estimates can be combined to produce an estimate of the uncertainty in the measurement 
result. This approach is illustrated in detail in Examples A1, A2, A3 and A4. 

9.2 Uncertainty sources 

9.2.1 It is possible to consider uncertainty of measurements to arise from four broad 
sources of error. These four sources are the random errors arising from the methods of both 
the sampling and analysis, and also the systematic errors arising from these methods. These 
errors have traditionally been quantified as the sampling precision, analytical precision, 
sampling bias and the analytical bias respectively (Table 4). If errors from these four sources 
are quantified, separately or in combinations, it is possible to estimate the uncertainty of the 
measurements that these methods produce. Methods for the estimation of three of the four 
errors are well established. Sampling and analytical repeatability precision can be estimated 
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by duplication of a proportion (e.g. 10%) of the samples and analyses respectively. Other 
contributions to analytical uncertainty, such as between-day variation and analytical bias, can 
be added. These additional contributions must be estimated separately. For example, between-
day variation should be determined during analytical method validation. Analytical bias can 
be estimated by measuring the bias on well-matched certified reference materials, and 
assuming that this bias represents that present for the test material, or by taking it directly 
from the validation of the analytical method. 

9.2.2 Procedures for estimating sampling bias include the use of a reference sampling 

target [15, 16] (the sampling equivalent of a reference material). Alternatively, they utilise 
measurements from inter-organisational sampling trials, in which the unsuspected sampling 
bias potentially introduced by each participant is included in the estimate of uncertainty based 
on the overall variability [17] (Section 9.5). Although some of the components of uncertainty 
associated with systematic effects may be difficult to estimate, it may be unnecessary to do so 
if there is good evidence that systematic effects are small and under good control. Such 
evidence may be qualitative, as in prior knowledge of the chemical or physical nature of the 
sampling target, or quantitative, such as information, for example from prior measurements 
on complete batches. (See Examples A3 and A4, Appendix A.) 

Table 4: Estimation of uncertainty contributions in the empirical approach  

Process 

 

Effect class 

Random  Systematic (bias) 

Analysis duplicate analyses gives 

precision under repeatability 

conditions  

e.g. validation data or CRM 

Sampling Duplicate samples Reference sampling target,  

inter-organisational sampling trial 
Four classes of effects that contribute to the uncertainty of measurements, and methods for their estimation.  

 

9.3 Statistical model for the empirical estimation of uncertainty 

In order to design experimental methods to estimate uncertainty using the empirical approach 
it is necessary to have a statistical model describing the relationship between the measured 
and true values of analyte concentration. This random effects model considers a single 
measurement of analyte concentration (x), on one sample (composite or single), from one 
particular sampling target:  

� = ����� + 	
��
���� + 	���������� 
where ����� is the true value of the analyte concentration (however expressed) in the sampling 
target (i.e. equivalent to the value of the measurand).  The total error due to sampling is 	
��
���� and the total analytical error is 	���������� 
In an investigation of a single sampling target, if the sources of variation are independent, the 
measurement variance ������  is given by, 

������ = ���������� + ����� !�"���  

 

where  ����������  is the between-sample variance on one target (largely due to analyte 
heterogeneity), and  ����� !�"���  is the between-analysis variance on one sample. 

If statistical estimates of variance (s2) are used to approximate these parameters, we get 
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#����� = #��������� + #���� !�"���  

The standard uncertainty (u) can be estimated using meass , which is therefore given by 

 $ =  #���� = %#��������� + #���� !�"���               Equation 1  

Variance caused by physical sample preparation can be included into the sampling variance, 
or expressed as a separate term if required.  

Since sanalytical, as determined in the empirical approach, is only the repeatability component of 
the analytical uncertainty, smeas may be underestimated. This is discussed further in section 
9.4.4. 

In a survey across several sampling targets, which is recommended for the estimation of 
sampling uncertainty (Section 9.4.2), the model needs to be extended to 

& = '!()� + *!�(��! + *�������� + *���� !�"�� 
where the additional term *!�(��! represents the variation of concentration between the targets 
and has variance �+�!,���-!�(��!� . Appropriate ANOVA generates estimates of the variances �+�!,���-!�(��!� , ���������� and ����� !�"��� , and the uncertainty is estimated exactly as before, 
using  Equation 1.  

The total variance �!.!��� , given by  

�!.!��� = �+�!,���-!�(��!� + ���������� + ����� !�"���  

is also a useful parameter in assessing fitness for purpose; this is discussed further in section 
16.2. For practical purposes the population variances are replaced by their estimates s2 to give 

     #!.!��� = #+�!,���-!�(��!� + #��������� + #���� !�"���                  Equation 2 

 

9.4 Empirical estimation of uncertainty 

9.4.1 Four types of method are applicable to the estimation of uncertainty using the 
empirical approach (Table 5). A fifth variographic method is described briefly in Section 9.6. 
The main method described further in this Guide is the ‘duplicate method’ (#1). If one 
sampler uses several sampling protocols in Method #2, any bias between the protocols can be 
detected. If multiple samplers all apply one protocol (Method #3, which is equivalent to a 
collaborative trial in sampling – CTS, or method performance test), then bias between 
different samplers can be detected and included in the uncertainty estimate. If multiple 
samplers apply different protocols that are selected to be the most appropriate for the stated 
objective, in their professional opinion (Method #4, which is equivalent to a sampling 
proficiency test – SPT), then any sampling bias introduced either between the sampling 
protocols, or between the samplers, can be detected and included in the estimate of 
uncertainty. A worked example of this approach has been described, but only with a single 
round of an SPT [17]. 
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Table 5: Four empirical methods for estimating combined uncertainty including 

sampling 

Method 

# 

Method 

description 

Samplers 

(persons) 

Protocols Component estimated 

Sampling Analytical 

Precision Bias Precision Bias 

1 Duplicates Single Single Yes No Yes3 No1 

2 Protocols Single Multiple Between protocols Yes3 No 1 

3 CTS Multiple Single Between samplers Yes Yes 2  

4 SPT Multiple Multiple Between protocols 
+between samplers 

Yes Yes 2 

  
1Analytical bias information may be obtained by including certified reference materials in the analytical run (see 
Example A2, Appendix A). 
2Analytical bias is partially or completely included in collaborative exercises where multiple laboratories are 
involved. 
3In these approaches, precision is estimated under repeatability conditions  

 

9.4.2 The duplicate method is the simplest and probably most cost-effective of the four 
methods described in Table 5. It is based upon a single sampler duplicating a small proportion 
(i.e. 10%, but no less than eight targets) of the primary samplese [18, 19]. Ideally the 
duplicates are taken from at least eight sampling targets, selected at random to represent the 
typical composition of such targets. If only one target exists, then all eight duplicates can be 
taken from it, but the uncertainty estimate will only be applicable to that one target. The 
duplicated samples are taken by repeating the same nominal sampling protocol, with 
permitted variations that reflect the ambiguity in the sampling protocol and the effect of 
small-scale heterogeneity of the analyte of interest on the implementation of that protocol. For 
example, in a ‘W’ design for collecting a composite sample over a bay of lettuces, the initial 
starting point and orientation of the ‘W’ is altered for the duplicate sample; for a grid design, 
again, starting point and orientation are altered (Example A1, Appendix A). The duplicate 
samples are obtained using a single sampling protocol and by a single person (sampler). Both 
of the duplicated samples are subject to physical preparation resulting in two separate test 
samples. Duplicate test portions are drawn from both of the test samples and analysed in 
duplicate (i.e. duplicate chemical analysis). This system of duplicated sampling and chemical 
analysis on both samples is known as a ‘balanced design’ (Figure 2). Note that the duplicate 
method does not include any contribution from sampling bias, which must be either assumed 
to be negligible, or estimated separately using, for example, multiple samplers, multiple 
protocols and/or inter-organisational sampling trials as in the other three methods. 

                                                 
e A higher level of replication can be used, but duplication is usually the most effective form of replication in 
sampling studies. It is better to take duplicates from 12 sample targets, than take triplicates from eight targets, for 
example, as although each estimate of the uncertainty of sampling (ssampling) has a lower standard error, the 
estimate is based on a smaller proportion of the entire population of sample targets, and is therefore less 
representative. The minimum number of eight duplicates is required to provide sufficiently reliable estimates of 
the uncertainty [19]. 
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Note 1: Although the ‘duplicate method’ is generally described in terms of a single sampler 
and protocol, the same design can be used with different samplers to incorporate the 
‘between-operator’ contribution to uncertainty (equivalent to Method #3). 

Note 2: A more cost effective ‘unbalanced’ design has duplicate analysis on only one of the 
two samples, for example on Sample 1 in Fig. 2. It has the same number of sample duplicates 
as the balanced design, but has half the number of analytical duplicates. This reduces the extra 
cost of applying this method to the same number of target by 33% ([20] Annex D)  

 

Figure 2: A balanced design 

 

 

 

 

 

 

 

 

 

Balanced experimental design for empirical estimation of uncertainty (i.e. two-stage nested design), using the 
‘duplicate method’. Removal of Analysis 2 on Sample 2 would result in the more cost-effective unbalanced 
design [Fig D2(b)], discussed in Note 2 above. 

 

9.4.3 The test portions are then chemically analysed anonymously by an appropriate 
analytical method under repeatability conditions (e.g. distributed randomly within an 
analytical batch). If estimates of the analytical portion of the measurement uncertainty have 
been made independently by the laboratory, this will be useful for comparison with estimates 
made by this method, or for separate inclusion in the uncertainty budget if required [21]  
Variance caused by physical sample preparation can be included into the sampling variance 
by having independent preparation on each of the sample duplicates. Alternatively, this 
variance can be estimated separately by inserting an extra level of replication in the 
experimental design (Appendix D). 

9.4.4 The balanced design proposed here will only give the repeatability standard deviation 
of the analytical measurements. In order to estimate the other part of the analytical 
uncertainty, an allowance has to be made for other sources of uncertainty, including day to 
day variation and potential analytical bias. The limitations of this approach, and a worked 
example, are given in Section 6 of Example A2. One alternative is to ask the measuring 
laboratory for the repeatability and measurement uncertainty, and then to check that the 
repeatability obtained in this study is similar to that claimed by the laboratory. If this is the 
case, we can use the measurement uncertainty given by the lab as u(analytical) (normally 
U/2). Where the observed repeatability differs considerably from the laboratory’s estimate of 
measurement uncertainty, it is usually prudent to use the larger of the two. A second 
alternative is to use the estimation of analytical bias made from the well-matched certified 
reference materials contained in the analytical batch. This bias estimate can then be combined 
with the repeatability to obtain the measurement uncertainty [1,22].  

between-analysis variance 

 analytical precision sanalytical 

Sampling 

target 

Sample 1 

Analysis 1 
1 

Sample 2 

Analysis 2 Analysis 1 Analysis 2 

10% of targets in whole survey 
n  8 

 between-target variance 

between-sample variance 

 sampling precision ssampling 
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9.5 Calculation of uncertainty and its components 

9.5.1 The random component of the uncertainty can be estimated by applying analysis of 
variance (ANOVA)f or range calculationg to the measurements of concentration on the 
duplicated samples. The estimation is based upon the model described in Section 9.3, applied 
to whatever measurement protocol that is being employed (with its specified number of 
sample increments and analytical replicates).  Both ANOVA and range calculations can be 
used for calculations in concentration units. Where the standard deviation is approximately 
proportional to the concentration, or the relative uncertainty is greater than 20%,  calculations 
should be performed after log-transformation of the data. See further section 5.7 on variation 
of standard deviation versus concentration. 
 

9.5.2 The values of ssampling and sanalytical from the ANOVA are estimates of sampling 
precision and analytical precision respectively. The random component of the measurement 
uncertainty is calculated by the combination of these two estimates (Equation 1). The 
expanded uncertainty, for approximately 95% confidence for example, requires this value to 
be multiplied by a coverage factor of 2. The expanded uncertainty (U) is then calculated using 

 / = 2#���� Equation 3 

U can also be expressed relative to the reported value x and expressed in terms of a 
percentage, as a relative expanded uncertainty U':  

 
       Equation 4 

The relative uncertainty is more widely applicable than the standard uncertainty, as it does not 
change appreciably as a function of concentration at values well above the analytical detection 
limit (>10 times). Other coverage factors can be selected as appropriate. The improvement of 
this estimate of uncertainty to include the systematic error from the chemical analysis is 
discussed in Example A2, Appendix A. 

The relative expanded uncertainty for the sampling or analysis alone can similarly be 
expressed as 

 

  

and 

  

                                                 
f There is often a small proportion (i.e. <10%) of outlying values in the frequency distributions of the analytical, 
within-sample and between-sample variability. This requires the use of some method of down-weighting the 
effect of the outlying values on classical ANOVA, such as the use of robust statistical methods. This gives a 
more reliable estimate of the variances of the underlying populations. A fuller explanation of these methods is 
given in the worked example in Appendix A1 (p40), A2 (p45). 
g See example in Appendix A3. 

¢U = 100
2smeas

x
%

¢Usampling = 100
2ssampling

x
%

¢Uanalytical = 100
2sanalytical

x
%
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Where the laboratory’s stated standard uncertainty uanalytical is larger than sanalytical, as 
determined by ANOVA, replacing sanalytical with uanalytical will be a better estimate of 
uncertainty. 

 

9.5.3 Classical ANOVA assumes that the frequency distribution of the effect is 
approximately normal (i.e. Gaussian), but in some cases it has been shown to be 
approximately log-normal. In such cases, natural logarithms can be taken of the measurement 
values, and the ANOVA performed on those log-transformed values. The results of such an 
ANOVA are not in the original units of analyte concentration, but can be used to calculate an 
standard uncertainty factor (F

u) and the expanded uncertainty factor (F
U). A measurement 

value can then be multiplied by FU to calculate the upper confidence limit, and divided by 
F
U 

to calculate the lower confidence limit, of the uncertainty interval. 

The standard deviation of the loge-transformed values (s(ln (x)) = sG) can be used to calculate 
the standard uncertainty factor (F

u) [23], where  

 

   
 

The more useful expanded uncertainty factor (F
U) using k = 2, can be calculated in two ways, 

either as 

 

 ………..Equation 5 

 

Alternatively, because multiply by k in log-space is the same as raising to the power of k in 

linear space, i.e.   , FU can also be calculated more simply as 

 

  

The upper confidence limit for the expanded uncertainty interval is calculated by multiplying 
the measured concentration (x) by FU, and the lower confidence limit as x divided by FU. This 
confidence interval is therefore not symmetrical about the measurement value in normal linear 
concentration space.  

The relative uncertainty u´, expressed as a fraction, can be calculated from  

 

which, for modest values of u´, (for example, < 0.2) is approximately equal to sG. 

A worked example of the calculation of FU is given in Example A2 of Appendix A. 

9.5.4 Because the uncertainty of many measurement systems is dominated by 
heterogeneity within the sampling target, the use of the simplest ‘duplicate method’ often 
gives a reasonably reliable estimate of uncertainty. Studies of environmental systems have 
shown that between-operator and between-protocol effects are often much smaller than those 
caused by heterogeneity [24]. Further information on selection of the most effective method 

Fu = exp(sG )

FU = exp(2sG )

FU = ( Fu)k

FU = ( Fu)2

¢u = exp(sG

2 )-1
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for uncertainty estimation is provided in Section 1. Examples of applications of the duplicate 
method are given in Examples A1 and A2, Appendix A. 

9.5.5 In addition to an initial single estimate of uncertainty for a particular sampling 
protocol applied to a particular sampling target, routine application of the ‘duplicate method’ 
is also useful as a way of monitoring the ongoing sampling quality (Section 13). This can 
allow for the effect on uncertainty of changes in the heterogeneity of the sampling target 
between different applications of the same sampling protocol. Quantitative evidence of the 
quality of sampling can then be gained, rather than relying solely on the assumption that 
samples are representative, if taken by a correct protocol.  

 

9.6 Alternative empirical methods of uncertainty estimation 

9.6.1 Variography was suggested as a further empirical means of estimating the 
uncertainty of measurement from the combined sources of sampling and analysis [25], and 
has now been demonstrated [26]. It is particularly useful in situations where there is large-
scale spatial and/or temporal variation in analyte concentration that can be quantified and 
modelled. This is the case for some instances of rock and soil geochemistry, and in emission 
control of (e.g. waste water), when large numbers (n>100) of evenly distributed samples have 
been taken. Further guidance on the principles and application of variography for this 
purpose, with a case study, is available [8].  

10 The modelling approach 

10.1 Cause-and-effect modelling 

10.1.1 The modelling approach, often colloquially known as ‘bottom-up’, has been 
described for measurement methods in general [2], and applied to analytical measurements 
[1]. It initially identifies all of the sources of uncertainty, quantifies the contributions from 
each source, and then combines all of the contributions, as a budget, to give an estimate of the 
combined standard uncertainty. In the process, the measurement method is separated into all 
of its individual steps. This can usefully take the form of a cause-and-effect, or ‘fish-bone’, 
diagram [1]. The uncertainty of measurement generated by each of these steps is estimated 
independently, either empirically or by other methods. The combined uncertainty is then 
calculated by combining the uncertainty from all of the steps by appropriate methods. This 
approach is well established for analytical methods [1], but has only more recently been 
applied to the process of sampling [25, 27]. For particulate systems, sampling theory uses a 
similar approach to identifying seven types a sampling error. One of these errors 
(fundamental) is estimated using an equation based on a detailed knowledge of the individual 
particles being sampled, as discussed in the next section (and Example A5, Appendix A). 

10.2 Sampling theory for estimation of uncertainty 

10.2.1 Sampling theory has been proposed as an appropriate method for estimating 
uncertainty from sampling [28]. This approach relies on the use of a theoretical model, such 
as that of Gy. Pierre Gy has developed a complete sampling theory described in many 
publications [6, 13, 29, 30, 31, 32]. Figure 3 shows Gy’s classification of sampling errors. 
Most sampling errors, except the preparation errors, are due to the material heterogeneity, 
which can be divided into two classes: 1) constitution heterogeneity (CH), and 2) distribution 
heterogeneity (DH). Both heterogeneities can be mathematically defined and experimentally 
estimated. Constitution heterogeneity refers to the fact that all natural materials are 
heterogeneous, that is, they consist of different types of particles (molecules, ions, grains). 
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Using this terminology, a distribution is termed ‘heterogeneous’ if the particles are not 
randomly distributed in the sampling target (or lot) to be investigated. 

Figure 3: Classification of sampling errors in Gy’s sampling theory 

 
* incorrect sampling errors are indicated by shaded boxes, and are excluded from the estimates of uncertainty 

10.2.2 The classification of errors of sampling forms a logical and useful framework for 
designing and auditing sampling procedures. Those that are central to the estimation of 
uncertainty (e.g. FSE in Figure 3) are discussed below, and others (SWE, PSE and GSE) in 
Appendix C. 

10.2.3 The total determination error, which Gy calls the global estimation error (GEE), is 
the sum of the total sampling error (TSE) and total analytical error (TAE). The components of 
TSE can be divided into two major groups: 1) errors of incorrect sampling, 2) errors of correct 
sampling. Some incorrect sampling errors arise from what the GUM [2] refers to as gross 
errors, and as such would be excluded from estimates of uncertainty. The errors of correct 
sampling occur within good practice and can be considered for inclusion within estimates of 
uncertainty following the GUM approach [2]. 

10.2.4 Incorrect sampling errors arise from sampling equipment and procedures that do not 
follow the rules of sampling correctness defined in the sampling theory. In Figure 3 these 
errors are shown in shaded boxes. Increment delimitation error (IDE) is error that is generated 
if the shape of sample is not correct. For example, from a process stream the correct sample is 

SWEIPEIXEIDEGSEFSEPSETSE

TAETSEGEE

=

=

)()(

Global Estimation Error

GEE

Global Estimation Error

GEE

Total Sampling Error

TSE

Point Selection Error

PSE

Total Analytical Error

TAE

Point Materialization Error

PME

Point Materialization Error

PME

Weighting Error

SWE

Increment Delimi-

tation Error

IDE

Increment Delimi-

tation Error

IDE

Long Range 

Point Selection Error

PSE1

Periodic 

Point Selection Error

PSE2

Fundamental 

Sampling Error

FSE

Grouping and 

Segregation Error

GSE

Increment Extraction 

Error

IXE

Increment Extraction 

Error

IXE

Increment and Sample

Preparation Error

IPE

Increment and Sample

Preparation Error

IPE

SWEIPEIXEIDEGSEFSEPSETSE

TAETSEGEE

=

=

)()(

Global Estimation Error

GEE

Global Estimation Error

GEE

Total Sampling Error

TSE

Point Selection Error

PSE

Total Analytical Error

TAE

Point Materialization Error

PME

Point Materialization Error

PME

Weighting Error

SWE

Increment Delimi-

tation Error

IDE

Increment Delimi-

tation Error

IDE

Long Range 

Point Selection Error

PSE1

Periodic 

Point Selection Error

PSE2

Fundamental 

Sampling Error

FSE

Grouping and 

Segregation Error

GSE

Increment Extraction 

Error

IXE

Increment Extraction 

Error

IXE

Increment and Sample

Preparation Error

IPE

Increment and Sample

Preparation Error

IPE

SWEIPEIXEIDEGSEFSEPSETSE

TAETSEGEE

=

=

)()(

Global Estimation Error

GEE

Global Estimation Error

GEE

Total Sampling Error

TSE

Point Selection Error

PSE

Total Analytical Error

TAE

Point Materialization Error

PME

Point Materialization Error

PME

Weighting Error

SWE

Increment Delimi-

tation Error

IDE

Increment Delimi-

tation Error

IDE

Long Range 

Point Selection Error

PSE1

Periodic 

Point Selection Error

PSE2

Fundamental 

Sampling Error

FSE

Grouping and 

Segregation Error

GSE

Increment Extraction 

Error

IXE

Increment Extraction 

Error

IXE

Increment and Sample

Preparation Error

IPE

Increment and Sample

Preparation Error

IPE



The modelling approach 

UfS:2019.P2  Page 24 

a complete slice of equal thickness cut through the process stream. The sampling device 
should be designed so that it can extract the intended sample profile (i.e. all constituents have 
an equal chance to end up in the sample). Otherwise sample or increment extraction error 
(IXE) is created. Sample preparation errors (IPE) have several potential causes listed in Table 
2, two of which are excluded from the calculation as they are considered to be gross errors by 
the GUM definition [2].  

10.2.5 Incorrect sampling errors have the following properties in common: 1) they create 
sampling bias and increase the total variance in an unpredictable way, 2) they are 
circumstantial and, therefore, any attempt to estimate them experimentally is normally not 
useful, because it is expensive and the results cannot be generalised. The correct way is to 
minimise or eliminate these errors by carefully auditing the equipment and procedures, by 
replacing structurally incorrect devices and procedures with those that follow the rules of 
sampling correctness, and by sufficient training of sampling personnel. Only if this technical 
part is correctly executed does the theoretical part of uncertainty evaluation have predictive 
value.  

10.2.6 Correct sampling errors are shown in the lower part of Figure 3. When the 
incorrect sampling errors are eliminated these errors can be modelled and used for estimating 
the uncertainty of sampling. The fundamental sampling error is among the most important and 
will be considered further here; others are discussed in Appendix C2. 

10.2.7 Fundamental sampling error (FSE) is the minimum error of an ideal sampling 
procedure. Ultimately it depends on the number of critical particles in the samples (a ‘critical 
particle’ is one that contains the analyte). For homogeneous gases and liquids it is very small 
but for solids, powders and particulate materials, especially at low concentrations of critical 
particles, fundamental error can be very large. If the lot to be sampled can be treated as a one-
dimensional object, fundamental sampling error models can be used to estimate the 
uncertainty of the sampling. If the lot cannot be treated as a one-dimensional object, at least 
the point selection error has to be taken into account, when the variance of primary samples is 
estimated. If the sample preparation and size reduction by splitting are carried out correctly, 
fundamental sampling error models can be used for estimating the variance components 
generated by these steps. If the expectance value for the number of critical particles in the 
sample can be estimated easily as a function of sample size, Poisson distribution or binomial 
distribution can be used as sampling models to estimate the uncertainty of the sample. In most 
cases the fundamental sampling error model can be used. 

10.2.8 If the material to be sampled consists of particles having different shapes and size 
distributions it is difficult to estimate the number of critical particles in the sample. An 
equation can be used to estimate the relative variance of the fundamental sampling error: 

 2 3 1 1
r

S L

Cd
M M


 

= - 
 

 Equation 6 

where 

a
r

La


 =  = relative standard deviation of the fundamental sampling error  

a = absolute standard deviation (in concentration units) 

aL = average concentration of the lot 

d = characteristic particle size = 95% upper limit of the size distribution 
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MS = sample size  

ML = lot size 

C is a sampling constant that depends on the properties of the material sampled; C is the 
product of four parameters: 

 C f g c=  Equation 6 

f = shape factor (see Figure 4) 

 g = size distribution factor (g = 0.25 for wide size distribution and g = 1 for uniform particle 
sizes) 

  = liberation factor (see Figure 4). For materials where the particles are completely 

liberated,  = 1. For unliberated material an empirical equation, 
x

L

d
  =  

 
, is used, where 

values of x ranging from 0.5 to 1.5 have been suggested. 

c = constitution factor and can be estimated if the necessary material properties are available 
by using: 
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      Equation 8 

Here aL is the average concentration of the lot,   the concentration of the analyte in the 
critical particles, c the density of the critical particles and m the density of the matrix or 
diluent particles. A fuller description of these terms can be found in [29]. 

10.2.9 If the material properties are not available and they are difficult to estimate, the 
sampling constant C can always be estimated experimentally. Certified reference materials, 
for example, are a special group of materials for which the sampling constant can be 
estimated from existing data.  

10.2.10 An example of how the fundamental sampling error model can be used in practice is 
given in Example A5, Appendix A.  

Figure 4 Estimation of factors for the estimation of fundamental sampling error. 
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The particle shape factor f (upper part), and liberation factor for unliberated material (lower left) and liberated 
material (lower right). L is the liberation size of the critical particles. 
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PART 4 – Management issues 

11 Responsibility for quality of sampling  

11.1 The implications of regarding sampling as an integral part of the measurement 
process are far reaching, and include management issues. The rigour that is applied to 
assessing and improving the quality of activities within the analytical laboratory should be 
applied equally to the sampling procedures. The responsibility for the quality of the whole 
measurement process should ultimately rest with one organisation, and responsibilities for 
different parts of the process must additionally be defined. Similarly, one body should take 
responsibility for estimating the measurement uncertainty, based on information from all 
participants. This organisation can then inform all of the participants of the contributions 
arising from the main steps in the measurement procedure.  

12 Selection of uncertainty estimation approach 

12.1  The empirical (top-down) and modelling (bottom-up) approaches each have their 
advantages in certain circumstances. These should be considered in selecting the approach for 
a particular sampling exercise. 

 The empirical approach includes all sources of uncertainty, without the scientist having to 
know their identity in advance. For example, it is automatically applicable to the 
particular contaminants and mineralogy present at a geological site. The calculations do 
not require any prior knowledge of the nature of the material (e.g. grain size, analyte 
speciation, degree of heterogeneity). It is relatively quick and easy to apply practically 
(especially for the ‘duplicate method’). There are at least four options available to allow 
progressively more accurate (and more expensive) estimates of uncertainty, as appropriate 
(Table 5). Some of these methods can allow for systematic error (such as sampling bias) 
within the estimate of uncertainty. Sampling proficiency tests and reference sampling 
targets are still in the early stages of development, but already show considerable promise 
for this application [17].  

 Among the disadvantages of the empirical approach is that it does not necessarily quantify 
any of the individual components of uncertainty (although this knowledge can be added 
with limited resolution). It is not based on a theoretical model of particulate sampling, but 
this may be an advantage in applications to materials that are not particulate in form (e.g. 
gaseous, liquids, biota). The empirical approach only gives an approximate value of 
uncertainty, which is assumed to be constant over the target, but this is also true of the 
modelling approach. Extreme values in the replicate measurements may lead to an 
overestimate of the uncertainty value, which is not representative of most measurements. 
This effect can be minimised, however, by the use of robust statistics ([33] and Section 6 
of Examples A1 and A2). 

 The principal advantage of the modelling approach is that it allows the largest source of 
uncertainty to be readily identified, if it was in the model. It gives a transparent method 
showing which components of uncertainty have been considered in the summation of 
uncertainty. Finally, where prior information is available, modelling approaches can be 
less costly than extensive experimental studies. 

 The disadvantages of the modelling approach include that the theoretical predictions of 
uncertainty may require detailed prior measurements of the mineralogy, grain size and 
analyte speciation of the material to be sampled (e.g. soil), and how these vary across the 
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target. Idealised assumptions have to be made therefore about the make up of the material 
(e.g. mineralogy, grain size and analyte speciation). The modelling approach using 
sampling theory requires estimates or assumptions about eight types of sampling error, 
and also how these might vary across the target. Both theoretical and empirical 
approaches can be relatively time consuming and therefore expensive to implement. 
Generic estimates may be too general and not reflect the specific circumstances at any 
particular sampling target. Further, not all of the sources of uncertainty might be 
identified, leading to an underestimate of the total uncertainty.  

On balance, therefore, the empirical methods tend to be more generally applicable across a 
wide range of types of material, and do not depend as heavily on prior knowledge of the 
system or all of the sources of uncertainty. This will make them less time consuming, and 
therefore less costly to apply, which is particularly valuable in one-off testing of different 
sampling targets. The modelling approaches, by contrast, lead to a more detailed assessment 
of individual known sources of uncertainty and are more appropriate when developing a long-
term sampling scheme for a specific well-characterised application. 

13 Quality control of sampling  

13.1 Relationship between validation and quality control 

13.1.1 Once an uncertainty that makes the measurements fit for purpose has been 
established, evaluation of the sampling and analytical procedures proposed to meet those 
purposes can be undertaken. Two evaluation tools are needed for this purpose: validation and 
continual quality control. 

13.1.2 Validation comprises a one-time estimation of the uncertainty components 
determined under conditions expected to be encountered in the routine use of the procedures. 
The validation may be done generically for the sampling method (initial validation) or site 
specifically for the method used ‘on site’ to the selected target (on-site validation). Initial 
validation is used when sampling is done as a one-time campaign (spot sampling, e.g. 
contaminated site investigation) and on-site validation is repeated at intervals (repeated 
sampling, e.g. time or flow-proportional sampling of waste water). In short, validation 
demonstrates what can be achieved and, if that conforms to the fitness-for-purpose 
requirement, the procedures are deemed suitable for routine use.  

13.1.3 Validation alone cannot ensure that routine results are indeed fit for purpose, 
however. Routine or site-specific conditions may differ from those prevailing during 
validation, either systematically or occasionally. This is especially true for sampling, where 
the larger part of the uncertainty component often stems from the heterogeneity of the target, 
that is, where the degree of heterogeneity may vary markedly from one target to the next. This 
is also true when a sampling method is applied at different sites. These circumstances 
emphasise the need for an ongoing internal quality control that includes sampling, to ensure 
that conditions prevailing at validation (and therefore the expected uncertainty attached to the 
results) are still applicable every time that the sampling and analytical procedures are 
executed. The combined use of validation and quality control is shown in Table 6. 
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Table 6: Illustration of the combined use of validation and quality control of sampling 

 One method used at 

many sites 

One method used 

repeatedly at one site 

Validation Initial validation yielding 
generic performance data 

On-site validation yielding 
the performance data for 
the specific target 

Quality control Extensive quality control 
with site specific 
verification of generic 
performance data 

Spot quality control 
verifying the performance 
data consistency over time 

 

13.1.4 The need for internal quality control of sampling is not widely recognised at present, 
and methods for executing it are not well established, except in some specialised areas such as 
geochemical prospecting [34]. Specific suggestions for sampling quality control are given for 
some environmental sampling matrices in [35]. However, no new principles are involved; 
with minor qualification, the principles of internal quality control of analysis are applicable to 
sampling [16, 36, 37]. Moreover, the methods used in validation are, with some 
simplification, applicable to internal quality control. The reason for the simplification is that 
validation needs to provide a good estimate of uncertainty, while quality control merely needs 
to demonstrate consistency, over space and time, with the uncertainty established at 
validation. 

 

13.2 Methods of internal quality control of sampling 

13.2.1 The focus of interest is almost exclusively the precision aspect. Bias is difficult to 
address in validation and almost impossible in internal quality control. The ‘reference target’, 
the conceptual equivalent in sampling of a certified reference material [15], is rarely available. 
Moreover, it is not fully useful: we need to see whether results for individual sampling targets 
are fit for purpose, not whether unbiased and reproducible results can be obtained on a 
possibly unrepresentative reference target.  

13.2.2 The principal tool is replication. This is minimally executed by taking two samples 
from each target by a complete (and suitably randomised) duplication of the sampling 

protocol. Each sample is analysed once and the difference between the results 1 2D x x= -

calculated. If the validated repeatability standard deviations of sampling and analysis are ,r ss   

and ,r as  respectively, the combined repeatability standard deviation is 2 2
, , ,r meas r s r as s s=   . 

Consequently, a one-sided range control chart can be constructed with a control limit (at the 
95% confidence interval) of 2.83sr,meas and an action limit (at the 99% confidence interval) of  
3.69sr,meas  [37] (Figure 5). An out-of-control value of d shows that the result should be 
scrutinised as possibly unfit for purpose. Such a result is not diagnostic and may stem from a 
disturbance in either sampling or analysis; the latter should be detected by standard methods 
of analytical quality control. 
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Figure 5: Example of an R-chart for quality control of sampling 

 
For the construction of this R-chart see the Nordtest Guide [37]. 

 

13.2.3 The data from quality control can also be used to update sampling method precision 
as obtained in method validation using the same methods, ANOVA or relative difference 
calculations. 

13.2.4 In some instances, the extra cost of duplicate sampling can be eliminated by use of 
the SAD (Split Absolute Difference) method in which the normal number of increments to be 
combined as the sample is segregated at random into two equal sized sub-sets, each of which 
is processed and analysed separately [38, 39]. The difference between such results has an 

uncertainty of 2 24 2s au u if conditions applying to validation are maintained. This again 

could be used to define an action limit in a one-sided control chart. 

14 Reporting and interpreting uncertainty 

14.1 Introduction 

14.1.1 It is crucial to ensure that reports are clear as to the measurand being reported. In 
particular, it is important to be clear whether the result and its uncertainty apply to a single 
test portion, a laboratory sample, the whole of a sampling target (e.g. a bulk material), or a 
series of targets. Using the principles of the GUM [2] and previous Eurachem/CITAC Guides 
[e.g. 1], uncertainty will initially be estimated in the form of a standard uncertainty, u, which 
includes due allowance for all effects which may reasonably influence the result. Uncertainty 
may be quoted in this form without change. However, it is often convenient to report in other 
forms for increased confidence or for wider applicability. It is essential to note any limitations 
in the estimate of uncertainty, such as the exclusion of sampling bias or other neglected 
effects. The following paragraphs describe the most important issues, and give some guidance 
on their interpretation. 

14.2 Expanded uncertainty, U 

14.2.1 The standard uncertainty u applied to a result in the form x  u, and associated with a 
normal distribution, describes an interval including only about 68% of the area of the 
distribution. This is usually taken to indicate that there is a greater than 32% probability of the 
measurand value being outside this interval. This is considered insufficient confidence for 
most practical applications. It is therefore normal practice to apply a suitable multiplier to the 
standard uncertainty so that the quoted interval includes a greater proportion of the dispersion. 
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Conventionally, this multiplier, usually designated k, is referred to as the coverage factor, and 
the product ku=U is referred to as the expanded uncertainty. 

14.2.2 The choice of k is discussed in considerable detail in other publications [1, 2]. 
However, the key principles are: 

 k should be chosen to reflect an approximate confidence interval for the particular 
distribution. 

 If a particular distribution is known to be applicable, it is used. Otherwise, a normal 
distribution is considered a reasonable assumption where the dominant contributions to 
uncertainty are all normally distributed or there are several approximately equal 
contributions from arbitrary distributions. With this assumption, k is typically based on the 
value of Student’s t for an appropriate (two-tailed) level of confidence and number of 
degrees of freedom.  

 In the modelling approach, the number of degrees of freedom is formally derived from the 
degrees of freedom for contributing uncertainties according to a published formula [1, 2], 
or approximated from the number of degrees of freedom for the dominant contribution 
[1]. More commonly, the number of degrees of freedom is assumed to be sufficiently 
large to justify a choice of k =2 for approximately 95% confidence. 

For most practical purposes, k =2 is considered acceptable, and is sometimes mandatory [40]. 
However, it is important to state the value of k used, and the approximate level of confidence 
that k implies, when reporting expanded uncertainty. 

14.3 Relative uncertainty statements 

14.3.1 It is often found that the standard uncertainty from sampling increases approximately 
proportionally with the value of the result. Under these circumstances, it is often most 
practical to quote the uncertainty in a relative form, such as a relative standard deviation /u x   
or percentage interval using Equation 4 (e.g. 10%). The relative value quoted is usually 
based on an estimate of uncertainty for one or more representative results, but is applicable 
over a greater range of concentration values.  

14.3.2 It is important not to extrapolate a simple relative standard deviation to zero 
concentration, as uncertainty does not normally disappear entirely at very low levels and the 
proportionality assumption is no longer valid. More general approaches to these situations can 
either specify a range of concentration over which the relative uncertainty value applies [37], 
or else express the uncertainty as a function of concentration [1,10]. Worked examples 
showing the calculation and expression of uncertainty are given in Appendix A. Some 
examples make the calculation of uncertainty in the original units of concentration (A1 and 
A2) and others calculate using relative uncertainty (A3-A6), although all examples finally 
expressed the uncertainty in relative form.  

14.4 Uncertainty Factor 

As explained in section 9.5.3 [23], it is sometimes more appropriate to express measurement 
uncertainty as an expanded uncertainty factor (F

U). This occurs when the frequency 
distribution of the effect is approximately log-normal, which is not uncommon at high values 
of sampling uncertainty. 

14.5 Contributions to uncertainty 

The exact steps that are included in each contribution to the measurement uncertainty need to 
be stated. It is possible to quantify some specific components of the measurement uncertainty, 
but the required methodology depends upon the method of estimation employed, the details of 
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the experimental design, and the person to whom the information is intended. For example, 
the experimental design in Figure 2 will give separate estimates of two components called 
‘sampling’ and ‘analytical’. When the details of this particular implementation of the design 
are examined it becomes evident that uncertainty from physical sample preparation is 
included within the general title of ‘sampling’, whereas that from chemical preparation is 
included within ‘analytical’. If required, it is possible to insert a further level of duplication of 
physical preparation within the experimental design to estimate the separate contribution 
which that particular step introduces [22]. Where the sampling uncertainty is expressed as an 
uncertainty factor (in the log-domain), and the analytical uncertainty as relative uncertainty 
(in the linear domain) it is possible to add these two components together [21]. One approach 
is to have both the sampling and analytical uncertainty components calculated and expressed 
in the log-domain, as shown in Example A2. A second approach is to assume, for the 
analytical component, that the relative standard uncertainty (s΄analytical) is approximately equal 
to the standard deviation of the natural logarithms (sG,analytical). This is an acceptable 
approximation when the s΄analytical < 0.2, which is usually the case. The two components can 
then be added as variances in log-space, as in the first approach. The exact steps that are 
included in each contribution to the measurement uncertainty need to be documented, 
however they are estimated. For less experienced users of analytical measurements, it may be 
better to report one value for the whole uncertainty of the measurement, stating which sources 
have been considered. 

14.6 Applicability of estimates  

Recalling the discussion of specification of the measurand (Section 5.2) it is crucial to ensure 
that reports are clear as to the measurand being reported. As observed in Section 14.1.1, it is 
particularly important to state clearly whether the result and its uncertainty apply to a single 
test portion, a laboratory sample, the whole sampling target, or to a series of targets. Unlike 
estimates of uncertainty for analytical measurements, it is very probable that the same 
sampling protocol will produce measurements with different levels of uncertainty from 
sampling when it is applied to a new sampling target. New estimates will be required for 
substantially different targets, particularly when there is reason to suppose that the degree of 
heterogeneity has changed. 

14.7 Interpretation of uncertainty statements against limits 

Results are often compared with tolerances or regulatory limits in order to assess compliance 
with a requirement. In making such comparisons, it is important to take uncertainty into 
account. A full discussion is beyond the scope of the present Guide; more detailed discussion 
will be found in references [1] and [41].  The basic principles are: 

 Decide whether the decision requires proof of compliance, proof of non-compliance, or a 
‘shared risk’ approach, and set an appropriate level of confidence. 

 For proof of compliance, the result and its uncertainty interval must be entirely within the 
permitted range. 

 For proof of non-compliance, the result and its uncertainty interval must be entirely 
outside the permitted range. 

 For shared risk approaches, set a range for acceptable measurement results based on the 
permitted interval, adjusted to provide a specified probability of false acceptance and false 
rejection rates. More recent guidance gives useful details of the procedure [42].  

For regulatory purposes, it is important to consult the specific regulations applicable, as no 
general guidance can currently cover all cases. For example, it is generally considered unsafe 
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to ‘pass’ material that is not proven compliant, dictating a proof of compliance approach. 
Criminal prosecution in most countries, however, requires clear proof of non-compliance and 
in these circumstances (e.g. blood alcohol prosecutions) it is normal practice to seek proof of 
non-compliance at high levels of confidence.  

15 Cost of estimating uncertainty from sampling 

15.1 It would seem logical to consider the total budget for validation and quality control 
of sampling to be judged together against the costs that will arise from erroneous decisions 
based on inadequate estimates of uncertainty. It is recognised that implementing uncertainty 
estimation will increase the overall costs of measurement. Applying the duplicate method, for 
example, can increase the cost of sampling by up to 10%, and the analysis by 30% (i.e. three 
additional analyses are required for applying the balanced design to 10% of the sampling 
targets. This increased cost can be justified, however, by the additional information gained 
and the reduced potential losses from incorrect decisions that might have been made without 
knowledge of the uncertainty (Section 16).  

Note: A more economical unbalanced experimental design may be performed, in which only 
one of the duplicate samples is analysed twice, if suitable statistical treatment is performed 
(Appendix D, [20]).  

15.2 It is more difficult to evaluate general costs for the other methods of uncertainty 
estimation. Inter-organisational sampling trials require the expenses of at least eight different 
participants (to obtain an acceptable reliability [17]), and are therefore likely to be 
significantly higher than those for the duplicate method. Modelling methods will require 
detailed information about the material being sampled. For some materials that are relatively 
consistent over many batches these values may be generally applicable, and therefore make 
this approach more cost-effective than empirical methods that take larger numbers of extra 
measurements on each batch. This discussion must therefore include the extent to which the 
uncertainty value for a particular protocol/material combination is estimated at a preliminary 
validation, and how much the value is continually monitored and/or updated by an ongoing 
sampling quality control scheme (Section 1). It would seem logical to consider the total 
budget for validation and quality control of sampling to be judged together against the costs 
that will arise from erroneous decisions based on inadequate estimates of uncertainty. 

16 Judging fitness for purpose of measurements using uncertainty 

16.1 A proper understanding of uncertainty from sampling must be embedded in the 
broader perspective of fitness for purpose. Three approaches have been suggested for setting 
fitness-for-purpose criteria. The first approach is to set a limit on the maximum value of 
uncertainty (i.e. target uncertainty) [43, 44] that is considered acceptable. This approach has 
been widely applied in the analytical sector, where a target relative uncertainty has been 
applied (e.g. 10%). The problem with this approach is that it does not necessarily relate to 
intended purpose for which the user requires the measurement.  

16.2 The second approach is to compare the variance generated by the measurement 
(sampling and analysis) to the variance of the measurements between the different sampling 
targets. There are many situations where the objective of the measurements is to compare 
concentrations between different targets, such as in mineral exploration where the objective is 
to locate a target with significantly higher concentration of an element of interest (e.g. gold). 
One application of this approach, for example, sets the fitness-for-purpose criterion so that the 
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measurement variance does not contribute more than 20% to the total variance (defined in 
Equation 2) [45]. 

16.3 The third, and most generally applicable, approach to judging the fitness for purpose 
of measurements, is consider the effect of the measurement on its ultimate purpose. All 
analytical measurement is undertaken to support a decision. A decision can be either correct 
or incorrect. An incorrect decision involves extra costs, and an incorrect decision is more 
likely if the uncertainty is higher. Consider, for example, the manufacture of a material 
against a specification of a maximum acceptable level of an impurity.h Each batch of material 
is analysed to determine the level of the impurity. A ‘false positive’ result has the outcome 
that the batch of material is discarded or reworked unnecessarily to reduce the apparently 
unacceptable level of impurity. A ‘false negative’ result means that a defective batch is 
released to the customer, a situation that may require financial compensation. Both of these 
situations are more likely to occur if the uncertainty is higher. This seems to suggest that the 
measurement should be undertaken so that the uncertainty is the smallest that can be 
achieved. However, reducing the uncertainty of a measurement result requires rapidly 
escalating costs. A useful rule here is that, where random variation dominates the uncertainty, 
the cost of a measurement is inversely proportional to the square of the uncertainty; a 
reduction in uncertainty by a factor of 2 calls for an increase in expenditure by a factor of 4. 

16.4 The true cost of a decision is the sum of the measurement costs and the excess costs 
of incorrect decisions. From the above we can see that this sum has a minimum value at some 
particular level of uncertainty (Figure 6), and this uncertainty is the definition of fitness for 
purpose. 

Figure 6: Schematic loss functions dependent on uncertainty of measurement 

 

 

Line A shows the costs of measurement. Line B shows costs of incorrect decisions. The sum of these two lines 
(the total cost shown by the highest line) shows a minimum cost at point C, which is the uncertainty that can be 
regarded as fit for purpose. 

 

16.5 The optimal apportionment of resources between sampling and analysis is also a 
matter of costs. Even an elementary consideration (excluding costs) shows that the 
uncertainties of sampling and analysis should be roughly balanced. For example, if the 
uncertainties of sampling and analysis are 10 and 3 units respectively, the overall uncertainty 
                                                 
h This concept is equally applicable to situations where materials have regulated minimum analyte 
concentrations, in which case the terms ‘false compliance’ and ‘false non-compliance’ are applicable. 



Judging fitness for purpose of measurements using uncertainty 

UfS:2019.P2  Page 35 

of measurement is 2 210 3 10.4 = . The overall uncertainty is hardly affected by a reduction 
of the uncertainty of analysis: if it is reduced to (say) 1 unit, the overall uncertainty is reduced 

to 2 210 1 10.05 = , an inconsequential change. A more sophisticated approach takes into 
account the different costs of analysis and sampling. If the unit costs of sampling and analysis 
are A and B for the same specific level of uncertainty, the optimum ratio of sampling 
uncertainty sampu  to analytical uncertainty analu  is given by 

 
1 4

samp

anal

u A

u B

 =  
 

. 

This ratio provides the minimum expenditure for a given overall uncertainty of 2 2
samp anal

u u  

or, alternatively, the minimum uncertainty for a given expenditure [46]. 

Methods for modifying uncertainty from sampling are discussed in Appendix E, although 
operating at ‘minimum total cost’ is not always achievable or necessary. 
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17 Implications for planning sampling and measurement strategies 

17.1 Expertise and consultation 

As Section 4 shows, the sampling and analytical processes cover a range of activities. 
Different parts of the process are frequently allocated to different staff, who may have very 
different knowledge of the objectives and, more importantly, differing knowledge of the 
effect of different parts of the process. In general, all of those involved will have good 
knowledge of some part of the process, but few are able to advise on the complete process. It 
is therefore important that sample planners involve analytical chemists and experienced 
sampling technicians where possible in planning sampling. It is also prudent to include 
statistical experts in most circumstances (see below). Decision makers (i.e. business managers 
and those acting on the results of sampling activities) should be involved in planning for new 
applications, and regulators should also be consulted where a protocol is intended to support 
regulation. 

Although the principles of this Guide are widely applicable, expert statistical guidance is 
always valuable and should be considered essential in some circumstances. These include: 

 where the observed or expected frequency distributions are not normal, for example where 
the results contain more than 10% outliers, or where the results show markedly 
asymmetric distributions; 

 where large financial or social consequences depend on a reliable estimate of uncertainty; 

 where confidence intervals are needed on the estimates of uncertainty or, for more 
complex sampling plans, on the measurement results; 

 where the sampling strategy is more complex than simple random sampling with 
replicated measurements, for example in implementing stratified sampling. 

17.2 Avoiding sampling bias 

The methods described in this Guide are suitable for establishing the variability of sampling, 
but only the more complex methods can begin to assess uncertainties associated with possible 
bias in sampling. For this reason, close attention should be paid to minimising potential 
sources of bias. These include possible bias associated with differential sampling due to 
particle size, density or flow-rate; bias in selection of sampling points; the effect of different 
sampling equipment etc. Specific expertise in sampling methodology should be sought unless 
these factors can be demonstrated to be adequately controlled or are completely specified by 
an established sampling protocol. 

17.3 Planning for uncertainty estimation 

Sampling exercises should always make provision for at least some replicated samples and 
measurements in order to assess the uncertainty of the results.  

17.4 Fitness-for-purpose criteria 

Planning should ideally begin with the establishment of clear fitness-for-purpose criteria, 
taking into account the relative costs and uncertainties of sampling and analysis where they 
are known or can reasonably be determined in advance. Section 16 provides guidance on how 
analytical and sampling effort can be optimised.  
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17.5 Use of prior validation data 

The main uncertainties associated with analytical measurements are often estimated during, or 
on the basis of, analytical method validation, a process which is carried out prior to bringing 
the method into use. Consideration accordingly needs to be given as to whether the variability 
found as part of the sampling experiment should replace, inform, or simply serve as a check 
on, the analytical measurement uncertainty assessed using prior information. In considering 
this issue, it should be noted that the variability observed during a relatively short series of 
analyses is rarely sufficient as an estimate of uncertainty. Long-term studies are generally 
more reliable. It is accordingly safer to rely on prior validation data unless the observed 
variation is significantly higher. 

Uncertainties associated with sampling variability can themselves be estimated in advance, 
particularly where a long-term sampling programme is to be planned and implemented. Under 
these circumstances, it is usually prudent to obtain an initial estimate of sampling uncertainty. 
Ongoing studies can then serve as a check on continuing validity of the uncertainty estimate, 
for example by applying internal quality control principles as discussed in Section 13. 

17.6 Acceptability of sampling uncertainty 

Before reporting measurements, it should be evaluated whether they are acceptable and in 
accordance with the quality objectives set for the whole uncertainty and its sampling 
component, probably based on some fitness-for-purpose criterion, prior to the measurements. 

17.7 Uncertainty estimation for on-site and in situ measurements 

It has been demonstrated that the ‘duplicate method’ of empirical uncertainty estimation can 
be applied to measurements that are made both on-site [47] and in situ [48] (that is, without 
removing a test portion). It is applicable to in situ measurements made at both the macro (cm) 
scale and the micro (m) scale [49]. However, there are still some outstanding questions for 
in situ measurements. For example, for field soils, it is not clear whether in situ and 
corresponding laboratory-based measurements should be expected to be comparable, when a 
test portion for laboratory measurement may have been dried, sieved or otherwise altered . 
Such treatment can clearly affect the apparent ‘bias’ between laboratory-based and in situ 
measurements, and in turn affects uncertainty evaluation. A similar issue arises for the 
specific application to in situ measurements of radioactivity, where laboratory measurements 
are usually made on a far smaller test portion than is interrogated by in situ measurement of 
gamma rays, for example [50]. 
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Appendix A: Examples 

Introduction  

The most effective way to explain the methodologies described in the main text of this Guide 
is to show worked examples. These examples are not intended to cover all circumstances, but 
to show how the general principles can be applied to a variety of situations across a range of 
different sectors. These include food (production and retail), animal feed, and environment 
(soil and water). The examples are all structured using the same basic format, so as to aid 
comprehension and comparability.  

Note: In order to allow calculations to be checked, these examples show more digits than 
would normally be reported for measurement uncertainty. In practice, it is rarely useful to 
quote more than two significant digits in reporting measurement uncertainty ([1], para 9.5.1). 
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Example A1: Nitrate in glasshouse grown lettuce 

 

Measurand Uncertainty estimation 

Analyte/ 
Technique 

Unit1 Sector/ 
Matrix 

Sampling 
target(s) 

Purpose Design Statistics 

Nitrate/Hot 
water 
extraction and 
determination 
by HPLC 

mg kg-1 

as received 
Food/ 
Lettuce 

1 bay of 
Iceberg  
lettuce 
grown under 
glass  

Uncertainty – 
total 
measurement, 
sampling and 
analytical 

Empirical 
- duplicate 
method 

Robust 
ANOVA on 
concentration 
values 

 

 

1 Scope 

Estimate the measurement uncertainty, and contributions from sampling and analysis, for 
routine monitoring of glasshouse grown lettuce, using a standard sampling protocol. 

2 Scenario and sampling target 

Nitrate is essential for plant health; however, there are concerns for human health associated 
with eating elevated levels of nitrate. The concentrations of nitrate in lettuce are regularly 
monitored in line with EC requirements. Concentration estimates are made for each ‘bay’ of 
up to 20,000 lettuce heads, and the result for each bay used individually in assessing 
conformance with the relevant Regulation. Each bay is accordingly considered a sampling 
target, rather than individual heads of lettuce. In order to make a reliable comparison of the 
measured nitrate concentrations against the European regulatory threshold [51]  
(4500 mg kg-1), an estimate of the measurement uncertainty is desirable.  

3 Sampling protocol 

The accepted protocol for this purpose specifies that one composite sample is prepared from 
10 heads of lettuce harvested from each bay of lettuce [52]. The lettuces are selected by 
walking a W shape or five-point die shape through the bay under investigation. This protocol 
is applied to all bays regardless of the size. Samples were taken in the morning and 
transported to the contracted analytical laboratory in ice-packed cool boxes to arrive within 24 
hours of sampling. 

4 Study design – duplicate method (Section 9.4.2) 

The minimum of eight targets were selected for inclusion in the uncertainty estimation 
protocol. For each of these bays a second 10-head sample was taken (S2) in addition to the 
routine sample (S1). This duplicate sample was taken in a way that represented the variation 
that could occur due to the ambiguities in sampling protocol, for example positioning of the 
origin of the W design, and its orientation. 
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Figure A1.1: Example of the 'duplicate method' 

 
Example of how the duplicate method can be applied. Using the W design as an example, the protocol stipulates 
the design but not the position or orientation. The ‘W’ is equally likely to start on the left or the right. Ten heads 
are taken along the line of the W to create a composite sample for one target. 

5 Sampling and analysis in the laboratory 

Primary samples were frozen on receipt at the laboratory. A lettuce (increment) from each 10-
head sample was cut into four equal quarters and two quarters retained. This was repeated for 
each of the 10 increments in the sample. The resultant 20 quarters were place in a Hobart 
processor and macerated to process a composite sample. Two analytical test portions (10 g) 
were taken. Each test portion was extracted using hot water and the nitrate concentration was 
determined by HPLC (ultra-violet detector). Quality control samples (spike recovery) were 
analysed concurrently with the real samples. No significant analytical bias could be detected 
and so bias correction was considered unnecessary for the resultant data. The original 
measurement values used for the estimation of uncertainty had appropriate rounding, and no 
suppression of values less than either zero, or the detection limit.  

6 Results 

The best estimates of the nitrate concentration at each of the eight target locations are shown 
in Table A1.1. 

Table A1.1: Measurements of the concentration (mg kg-1) of nitrate in eight duplicated 
samples. The duplicate samples are labelled S1 and S2. Likewise, duplicate analyses are 
labelled A1 and A2. Hence, DS1A2 (value 4754 mg kg-1) is analysis 2, from sample 1 from 
sampling target D 

 

Sample 

target 
S1A1 S1A2 S2A1 S2A2 

A 3898 4139 4466 4693 

B 3910 3993 4201 4126 

C 5708 5903 4061 3782 

D 5028 4754 5450 5416 

E 4640 4401 4248 4191 

F 5182 5023 4662 4839 

G 3028 3224 3023 2901 

H 3966 4283 4131 3788 
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Before applying statistical methods it is useful to inspect the data to ascertain the general 
levels of variability. The analytical duplicates (e.g. BS1A1 and BS1A2) are generally within 
300 mg kg-1 of each other, suggesting an analytical precision of less than 10%. The sample 
duplicates (e.g. DS1 and DS2) agree less well, but generally differ by less than 20%. 
However, one target (C) displays a greater difference, suggesting an outlying value.  

Quantification of the random component of the measurement uncertainty and two of its main 
components (sampling and analysis) was made using robust analysis of variance (RANOVA 
[53], Appendix C3, with output in Figure.A1.2. Robust ANOVA was used here as outlying 
targets are, in this relatively well-controlled environment, considered likely to be anomalies, 
rather than reflecting the underlying population statistics, and as a precaution against 
analytical outliers.  

Note: Robust methods should not be used where apparent outliers arise as part of the typical 
population of sampled increments or targets, unless the specific implementation allows for 
non-normal distributions for part of the assumed error structure ([33, 23]).  

Figure A1.2: Output of Classical and Robust ANOVA on data in Table A1.1 

CLASSICAL ANOVA RESULTS  

 Mean = 4345.5625 

 Standard Deviation (Total) = 774.5296 

 Sums of Squares = 12577113    4471511     351320      

                         Between-target          Sampling          Analysis 

 Standard Deviation         556.2804               518.16089         148.18063   

 Percentage Variance      51.583582               44.756204        3.6602174   

 

 ROBUST ANOVA RESULTS:  

 Mean = 4408.3237 

 Standard Deviation (Total) = 670.57617 

                                   Between-target          Sampling             Analysis          Measurement 

  Standard Deviation          565.39868              319.04834          167.94308           360.5506    

 Percentage Variance         71.090791              22.636889          6.2723172           28.909209   

 Relative Uncertainty                    –                      14.474814          7.6193626           16.357719   

 (% at 95% confidence) 

The output of ANOVA for data produced form a balanced experimental design (n = 8, Table A1.1). Both robust 
and classical estimates are given for comparison. Standard deviation estimates are computed for ‘between- 
target’ (sbetween-target), ‘within-target’ (ssamp) and within-chemical analysis (sanal). Results are in the same units of 
concentration as the input data (i.e. mg kg-1 in this case).  

 

Extracting the robust estimates from this output gives: 

ssamp = 319.05 mg kg-1  

sanal= 167.94 mg kg-1 

Equation 1 can be used to calculate:  

smeas =  (ssamp
2
 + sanal

2
 ) = 360.55 mg kg-1  
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This can be used as an estimate of the random component of the standard uncertainty (u).  

The expanded relative uncertainty is given by Equation 4 (page 20) as: 

 Umeas' = 2*100 * 360.55 / 4408 = 16.4% (of concentration value) 

For the sampling alone, the expanded relative uncertainty (random component) is similarly 
given by: 

Usamp' = 2*100 * 319.05 / 4408 = 14.5% 

For comparison the expanded uncertainty for the analytical contribution (random component) 
is given by: 

Uanal' = 2*100 * 167.94 / 4408 = 7.6%  

This value is less than the normal limits set within internal analytical quality control (e.g. 
10%).  

The analytical recovery estimates were not statistically different from 100% recovery (i.e. no 
analytical bias was detected). For this example, therefore, no additional allowance was made 
for uncertainty associated with analytical bias.  

7 Comments 

This uncertainty estimate does not include any estimate of the possible sampling bias.  

8 Assessment of the fitness for purpose of these measurements 

The fitness-for-purpose criterion used initially is that based on the percentage of total variance 
(Section 16.2). When using RANOVA the program computes how much the between-target, 
within-target (or sampling) and analytical variance contributes (as a percentage) to the total 
variance (Figure A1.2). For this study of nitrate in lettuce the maximum contribution to the 
total variance is from between-target variability (71.1%). By combining the sampling (22.6%) 
and analytical contributions (6.3%) it is clear that the combined measurement process 
contributes 28.9% of the total variance. This is marginally greater than the ideal of 20%. Of 
this measurement variance, sampling is the dominant factor, responsible for 78.2% of the 
measurement variance. 

Fitness for purpose may also be assessed using the optimised uncertainty (OU) methodology. 
This method addresses fitness-for-purpose assessment with financial considerations (Section 
16.3) [54]. In this case it can be shown that an increase from a 10-head to a 40-head 
composite sample is required to achieve fitness for purpose (Appendix E, and [55]). 

9 Reporting and interpretation 

For each bay of lettuce (sampling target), the nitrate concentration of the 10-head composite 
sample is compared to the threshold value (4500 mg kg-1). Each nitrate concentration should 
be reported with the measurement uncertainty (16.4% of the measured value) Table A1.2. The 
interpretation of whether each batch exceeds a threshold value, based upon its measurement 
and associated uncertainty, depends on the wording of the appropriate regulation [42]. 
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10 Summary 

 

Measurement uncertainty 

Sampling Analytical Total 

14.5% 7.6% 16.4% 

 

 

Table A1.2 Reported nitrate concentration of each batch with its own measurement 

uncertainty 

Sample 

target 
S1A1 

Expanded 

Uncertainty 

A 3898 639.3 

B 3910 641.2 

C 5708 936.1 

D 5028 824.6 

E 4640 761.0 

F 5182 849.8 

G 3028 496.6 

H 3966 650.4 

The nitrate concentrations associated with S1A1 (routine sample) are shown with the associated measurement 
uncertainty (calculated from U = 16.4%). As an example, Target F has a value of the measurand (or true value) 
between 4332 mg kg-1 and 6032 mg kg-1. 
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Example A2: Lead in contaminated top soil 

 

Measurand Uncertainty estimation 

Analyte/ 
Technique 

Unit Sector/Matrix Sampling 
target(s) 

Purpose Design Statistics 

Total lead 
/ICP-AES 

mg kg-1 
dry 
basis 

Environmental/ 
Top soil 

100 targets – 
each of area 
30 m x 30 m, 
with depth of 
0–150 mm  

Uncertainty –
total 
measurement, 
sampling and 
analytical. 

Uncertainty 
factor 

Empirical 
- duplicate 
method 

Robust 
ANOVA on 
concentration 
values 

& Classical 
ANOVA after 
log-transform-
ation 

 

1 Scope 

Estimate the measurement uncertainty, and contributions from sampling and analysis, at each 
of 100 different sampling targets within one site, using a common sampling protocol. 

2 Scenario and sampling target 

An investigation was made of a 9-hectare site, as part of the assessment of the land for 
potential housing development [56]. The most important analyte element for human health 
risk assessment was found to be lead. In order to compare the concentration of lead in the soil 
with the then national regulatory threshold limit (450 mg kg-1), an estimate of the lead 
concentration and the measurement uncertainty was required for each of 100 sampling targets. 

3 Sampling protocol 

One hundred samples of top soil (nominal depth 0–150 mm) were taken with a hand auger 
(diameter 25 mm) at 100 locations. These locations were distributed on a regular grid with 
sample spacing of 30 m (Table A2.1), and therefore each is intended to represent an area 30 m 
by 30 m. The surveying was conducted with a measuring tape and compass. 

4 Study design – duplicate method (Section 9.4.2) 

Ten of the samples (i.e. 10% of the total number), at randomly selected locations, were 
sampled in duplicate using the balanced design (Figure 2). The duplicate samples were taken 
at a distance of 3 m from the original sample, in a random direction. This aims to reflect the 
ambiguity in the sampling protocol, the uncertainty in locating the sampling target (e.g. the 
surveying error) and also the effect of small-scale heterogeneity on the measured 
concentration within the specified target. Six soil certified reference materials (CRMs) were 
selected for analysis to estimate analytical bias over a range of concentration. 

5 Sampling and analysis in the laboratory 

Primary samples were oven dried overnight at 60 C, disaggregated, sieved to remove particles 
with a natural grain size greater than 2 mm (based upon the definition of soil). The sieved 
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samples (<2 mm) were all ground (95% < 100m) and mixed. Test portions of 0.25 g were 
taken for dissolution with nitric and perchloric acids, prior to determination of lead by ICP-
AES [57]. The measurements were subject to full analytical quality control (AQC), and 
corrected for reagent blank concentrations where these values were statistically different from 
zero. The original measurement values use for the estimation of uncertainty had no rounding 
or suppression of values less than either zero, or the detection limit. 

6 Results 

6.1 Initial estimation of relative uncertainty 

The best estimates of the lead concentration at each of the 100 target locations are shown in 
the format of a map (Table A2.1). 

 

Table A2.1: Measured lead concentrations at each target on the sampling grid (mg kg
-1

), 

shown by the actual coordinates used in the regular sampling grid (spacing 30 m) [56]. 

They show a high degree of variability between-locations of roughly a factor of 10. The 

variability within 10 of these locations selected at random (i.e. A4, B7, C1, D9, E8, F7, 

G7, H5, I9 and J5) was used for the estimation of uncertainty from sampling (Table 

A2.2). This within-target variation is substantial (e.g. a factor of 2) but substantially less 

than the between-target variability. 

Row A B C D E F G H I J 

1 474 287 250 338 212 458 713 125 77 168 

2 378 3590 260 152 197 711 165 69 206 126 

3 327 197 240 159 327 264 105 137 131 102 

4 787 207 197 87 254 1840 78 102 71 107 

5 395 165 188 344 314 302 284 89 87 83 

6 453 371 155 462 258 245 237 173 152 83 

7 72 470 194 82.5 162 441 199 326 290 164 

8 71 101 108 521 218 327 540 132 258 246 

9 72 188 104 463 482 228 135 285 181 146 

10 89 366 495 779 60 206 56 135 137 149 

 

Four measurements from the balanced design for each of the 10 sample targets selected for 
duplication were used for the estimation of uncertainty (Table A2.2). Visual inspection of the 
data allows an initial qualitative assessment of the relative importance of the two sources of 
measurement uncertainty. The low level of agreement between the concentration values from 
some of the sample duplicates is indicative of a high level of sampling uncertainty (e.g. S1 
compared to S2 for target ‘D9’). The agreement between the analytical duplicates (A1 and 
A2) is however generally much better for most samples (< 10% difference) than that between 
the sample duplicates.  
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Table A2.2: Measurements of the concentration (mg kg
-1

) of a lead on 10 duplicated 

samples from the total of 100 targets in a survey of contaminated land (Table A2.1) [56]. 

The duplicate samples are labelled S1 and S2. Likewise, duplicate analyses are labelled 

A1 and A2. Hence, D9S1A2 (value 702 mg kg
-1

) is analysis 2, from sample 1 from 

sampling target D9. Values shown are rounded for clarity, and used for subsequent 

calculations, but generally un-rounded values are preferable for these calculations. 

Sample 

target 

S1A1 S1A2 S2A1 S2A2 

A4 787 769 811 780 

B7 338 327 651 563 

C1 289 297 211 204 

D9 662 702 238 246 

E8 229 215 208 218 

F7 346 374 525 520 

G7 324 321 77 73 

H5 56 61 116 120 

I9 189 189 176 168 

J5 61 61 91 119 

 

Visual inspection of a histogram of the measured values of lead concentration across the site 
(Fig A2.1a) suggests that the frequency distribution is positively skewed. This skew can be 
largely removed by the taking of the natural logarithms of these measurement values, which 
results in a distribution that is approximately normal (Fig A2.1b).   

Fig A2.1 Histograms of the Pb concentration (in mg kg
-1

) measured in 100 soil samples 

shown on (a) the original linear scale (b) after natural logarithms were taken. 

 

(a) 
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(b) 

 

Using the original untransformed measurement values (Table A2.2), the random component 
of the measurement uncertainty and two of its main components (sampling and analysis) can 
be quantified using robust analysis of variance (using, for example, the program RANOVA2 
[53]). Robust statistics assume an underlying normal distribution, but accommodate the 
outlying values that are evident in this data (e.g. target A4, sample duplicate D9S1/S2, 
analytical duplicate B7S2A1/A2), and in most similar data sets [33] (but see the Note in 
Example A1, section 6). The estimates of uncertainty are averaged over the 10 targets, 
assuming that the uncertainty is not varying significantly over this range of concentration. The 
uncertainty is expressed in relative terms so that it is applicable over this range of 
concentration (Section 14.3).  

Extracting the robust estimates from this output (Fig. A2.2) gives: 

ssampling = 123.8 mg kg-1  

sanalytical = 11.1 mg kg-1 

Equation 1 can be used to calculate:  

smeas =  (ssampling2 + sanalytical2 ) = 124.3 mg kg-1  

This can be used as an estimate of the random component of the standard uncertainty (u).  

The expanded relative uncertainty is given by Equation 4 (page 20), with a coverage factor of 
2 as: 

Umeas' = 2 * 100 * 124.3 / 297.3 = 83.63% (of concentration value) 

For the sampling alone, the expanded relative uncertainty (random component) is similarly 
given by: 

Usampling' = 2 * 100 * 123.8 / 297.3 = 83.29% 
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Figure A2.2: The output of RANOVA2 for data produced from a balanced experimental 

design applied to the original measurement values (n = 10, Table A2.2). It shows the 

classical and robust estimates of the mean and the component variances, shown in the 

statistical model (Equations 1 & 2), expressed as standard deviations. The output also 

shows the expanded uncertainty factor calculated from the loge-transformed values (on 

eighth line), discussed in Section 6.2 below. 

Classical ANOVA 

Mean 317.8   No. Targets 10   

Total Sdev 240.19         

  Btn Target Sampling Analysis Measure   

Standard deviation 197.55 135.43 17.99 136.62   

% of total variance 67.65 31.79 0.56 32.35   
Expanded relative uncertainty 
(95%) 85.23 11.32 85.98   

Uncertainty Factor (95%) 2.6032 1.12 2.6207   

 

Robust ANOVA 

Mean 297.31       

Total Sdev 218.49       

  Btn Target Sampling  Analysis Measure 

Standard deviation 179.67 123.81 11.144 124.31 

% of total variance 67.63 32.11 0.26 32.37 

Expanded relative uncertainty 
(95%) 83.29 7.50 83.63 

          
Both robust and classical estimates are given for comparison. Standard deviation estimates are computed for 
‘between-target’ (sbtn-target), ‘within-target’ (ssampling) and within-chemical analysis (sanalytical). Results are in the 
same units of concentration as the input data (i.e. mg kg-1 in this case), except for the percentage of total 
variance, expanded relative uncertainty, and the expanded uncertainty factor (F

U).  

 

For comparison, the expanded uncertainty for the analytical contribution (random component) 
is given by 

Uanalytical¢ = 2 * 100 * 11.1 / 297.3 = 7.5%  

This value is less than the typical limits set within internal analytical quality control (e.g. 
10%).  

6.2 Log-transformed values and the Uncertainty Factor 

The second way to estimate the uncertainty is to log-transform the measurement values (Table 
A2.2), usually using the natural logarithm (abbreviated ln or loge), on the assumption that they 
are log-normally distributed. The histogram (Fig A2.1) shows that the between-target 
variability is approximately log-normal, but ideally we need to assess the frequency 
distribution of the sampling variability within each target. With only ten sample duplicates in 
this example, it is not possible to fully characterise this sampling distribution. However, the 
unusually large ratio of the average measurements on the sample duplicates for two targets 



Example A2  

UfS:2019.P2  Page 49 

(4.3 for G7, and 2.8 for D9), suggests a positive skew associated with a log-normal 
distribution for the sampling variability, similar to that for the between-target variability (Fig 
A2.1). Furthermore, both types of variability are largely controlled by the heterogeneity of the 
analyte, which has been shown to often be of a similar form of frequency distribution over a 
wide range of spatial scales [58]. 

The values that are calculated by applying classical ANOVA to the loge-transformed values 
are given in Table A2.3. The mean value in log-space (5.478), gives the geometric mean 
(239.4 mg/kg = e5.478). The measurement standard deviation of the loge-transformed values 
(sG,meas = 0.4817) can be used to calculate the expanded uncertainty factor (2.6207= e2*0.4817) 
using Equation 5.  
F
U = exp(2sG)……… Equation 5 (repeated from Section 9.5.3) 

 

This calculation can also be made automatically by an ANOVA program that log-transforms 
the original measurement values that are the data input (output in Fig. A2.2, line 8) [53].  

Table A2.3. Classical ANOVA output when applied to the natural logarithms of each of 

the measured concentration values in Table A2.2. 

Mean 5.478       

Total Sdev 0.82337       

  Btn Target Sampling Analysis Measure 
Standard 
deviation 0.66775 0.4784 0.0567 0.4817 
% of total 
variance 65.77 33.76 0.47 34.23 

 

For this example the value of FUmeas is 2.62. This uncertainty factor is evidently dominated by 
the contribution from sampling, FUsampling , which is 2.60. This component is shown directly in 
the ANOVA output (Fig. 2.2, line 8). It can also be calculated directly as 2.6034 (= e2*0.4784) 
by placing the value of sG, sampling (= 0.4784, Table A2.3) in Equation 5.  

     

Table A2.4: Confidence limits (lower LCL, and upper UCL) and confidence interval 

(CI), calculated for a nominal measured concentration value of 300 mg kg
-1

, when 

measurement uncertainty is expressed as either expanded relative uncertainty (U΄), or 

an expanded uncertainty factor (
F
U). The much higher UCL for the 

F
U approach better 

reflects the positive skew of the underlying frequency distribution (Figs A2.1) 

 Value LCL Calculation 

of LCL 

UCL Calculation 

of UCL 

CI around 

measured value 

units  mg kg-1  mg kg-1  mg kg-1 

U΄ 83.6% 49 300 - 83.6% 551 300 + 83.6% ± 251 
F
U 2.62 115 300/2.62 784 300 x 2.62 -185, + 484 

 

A useful way to compare these two approaches of calculating and expressing uncertainty, is to 
compare the resulting 95% confidence limits (Table A2.4). For a typical measured lead 
concentration value of 300 mg kg-1, the expanded uncertainty of 83.6%, gives a lower 
confidence limit (LCL) of 49 mg kg-1 (i.e. 300 – 83.6%) and an upper confidence limit (UCL) 
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of 551 mg kg-1 (i.e. 300 + 83.6%). This gives a symmetrical confidence interval of  251 mg 
kg-1. However, using the uncertainty factor approach, the LCL is 115 mg kg-1 (i.e. 300/2.62), 

and the UCL is 784 mg kg-1 (i.e. 300×2.62). This confidence interval is clearly asymmetric 
around the measured value, being from -185 mg kg-1 to + 484 mg kg-1 from the measured 
value respectively. This positive skew reflects the assumptions made about the distribution of 
the original measurement results (Fig A2.1a). The uncertainty factor approach is much more 
inclusive of the few very high values, with the UCL going up to 784 rather than just to 551 
mg kg-1, and is therefore more representative of the scatter of the original measurements. 
Furthermore, the frequency distribution of the original measurement values suggests that there 
are more than 10% of outlying values, which is the limit for the reliable estimation of 
uncertainty using this particular robust ANOVA [53]. Both of these factors suggest that the 
uncertainty factor approach is more reliable in this case. 

6.3 Calculation of the relative uncertainty from the uncertainty factor 

Although the uncertainty factor is sometimes the most reliable way to express the 
measurement uncertainty, it can also be useful to express it in term of the more familiar 
relative uncertainty. Relative uncertainty (u') is usually expressed as a percentage (Equation 4, 
page 20), but can also be expressed as a fraction of unity. As described in Section 9.5.3, the 
fractional value of u´ can be calculated from the standard deviation of the natural logarithms 
of the measurement values (s(ln(x)) = sG) using the relationship: 

  
In this example, where sG,meas is 0.4817, this equation gives u' as 0.5111 (i.e. 51%). As u' is 
greater than the specified guideline of 20%, (i.e. u' > 0.2), it cannot be multiplied by 2 to give 
an expanded uncertainty, 

6.4 Inclusion of analytical bias 

The analytical bias was estimated as –3.41% (±1.34%) using a linear functional relationship 
[59] established between the measured values on the certified values of the six CRMs (Table 
A2.5). 

There is currently no consensus on the best way to combine random and systematic effects 
into an estimate of uncertainty, although four options have been identified [22]. One option 
[37] is to consider the estimated analytical bias (e.g. –3.41%) to be a typical value for 
participants in an inter-organisational trial. If this bias, and its own uncertainty (1.34%) is 
then added to the random component of the uncertainty (using the sum of squares) it will 
increase the variance to that which would be found in such a trial. The logic of this approach 
is that the extra uncertainty that is usually detected in inter-organisational trials is due to the 
unsuspected bias within each organisation. Where an estimate can be made of the extra 
variance caused by these biases between different laboratories, this can be added to the 
random component within one organisation. In this case, the standard relative analytical 
uncertainty is increased to 5.24% [ = (3.752 + 3.412 + 1.342)0.5]. The expanded analytical 
uncertainty (10.48%) is then greater than the analytical target value of 10%, but it can also 
usefully be compared with an independent estimate of the analytical measurement uncertainty 
made within the laboratory. The expanded uncertainty for the whole measurement is thereby 
increased to 83.95% [ = (83.292 + 10.482)0.5], which is practically identical to the purely 
random component of 83.63%. Using the uncertainty factor approach, the contribution of the 
analytical bias would similarly be negligible in this example. In cases where it is not 
negligible, it could be added into FU using published methods [21]. 

¢u = exp(sG

2 )-1
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Table A2.5: Measured and certified lead concentration values for CRMs for the 

estimation of the bias of the analytical method [56] 

CRM name 

(n=4) 
Mean 

(mg kg-1) 
Standard 

Deviation 

(mg kg-1) 

Certified 

value 

(mg kg-1) 

U on 

certified 

value 
(95% conf.) 

NIST2709 19.7 3.2 18.9 0.5 

NIST2710 5352.0 138.0 5532.0 80.0 

NIST2711 1121.4 14.7 1162.0 31.0 

BCR141 34.4 3.9 29.4 2.6 

BCR142 36.2 4.6 37.8 1.9 

BCR143 1297.5 33.0 1333.0 39.0 

 

 

7 Comments 

This estimate of uncertainty does not make allowance for any undetected sampling bias 
(Section 9.4.2). However, because the uncertainty is often dominated by the heterogeneity of 
the sampling target, the extra uncertainty introduced by bias in sampling can often be 
assumed to be insignificant by comparison (as shown for the analytical bias). Where the 
highest quality of uncertainty estimate is required, due perhaps to potentially large financial 
consequences from underestimating the uncertainty, it may be preferable to use one of the 
more elaborate methods using multiple samplers and/or protocols (Table 5). 

If the measurand (or true value) had been defined as the mean concentration of lead across the 
whole site, the uncertainty would have had to include the contribution from the standard error 

on the calculated mean value, expressed as /totals n . For this example stotal is 403 mg kg-1, n 
= 100 (Table A2.1) and the uncertainty on the mean (291.9 mg kg-1) is therefore 27.6% of the 
value, at 95% confidence. This value can be calculated without knowing the individual 
contribution of the uncertainty from either the sampling or the analysis, and is often 
dominated by sbetween-sample. Alternatively, assuming a log-normal distribution of all 100 
measurement values (Table A2.1), the geometric mean is 208 mg kg-1 and sG,total on these 
values is 0.733. The uncertainty factor FU on the geometric mean is 1.158 (i.e. exp[2sG/n] 
using Equation 5), giving a smaller but asymmetric confidence interval of -13.7% to +15.8% 
of the geometric mean. 

8 Assessment of the fitness for purpose of these measurements 

Using the ‘percentage of total variance’ method (Section 16.2), the output in Figure A2.1 
attributes the percentage of the total variance ([standard deviation (total)]2 that is contributed 
by ‘between-target’, sampling (within-target) and analysis (within-sample). In this particular 
example there is clearly a dominance of the ‘between-target’ variance (67.6% of total 
variance), although this is less than the ideal threshold of 80% (Section 16.2). Furthermore, 
sampling dominates (32.11% of total variance) over chemical analysis (0.26% of total 
variance) as a contributor to the measurement variance. Sampling variance (i.e. within-target) 
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is identified as the principal contributor (99.2%) of uncertainty in the measurement process in 
this case (i.e. 100 * 32.11 / [32.11 + 0.26]). 

The assessment of fitness for purpose of measurements in contaminated land investigation 
using the optimised uncertainty method (Section 16.3), is described elsewhere [60, 61].  

9 Reporting and interpretation 

Individual measurements of lead concentration reported for these targets should have attached 
a FU value of 2.62, or a U¢ value equal to 83.9% of the concentration value. This applies to all 
of these measured values (Table A2.1), which are at least 10 times higher than the analytical 
detection limit (estimated as 2 mg kg-1 in this case). In applications where this is not the case, 
it will be necessary to express the uncertainty as a function of the concentration [10]. 
Furthermore, the uncertainty on the mean measurements taken at the 10 targets where 
duplicate samples were taken (e.g. those listed in Table A2.2), will have a reduced FU of 1.98 
(i.e. exp(2*sG/2) using Equation 5), or a U¢ estimate of 59.3% (= 83.9/

Knowing the value of the uncertainty, it is also possible to make a probabilistic interpretation 
of the level of lead contamination on the site [24]. 

10 Summary 

 Measurement uncertainty* 

 Sampling Analytical Total 
F
U 2.60 1.12 2.62 

U¢ 83.3% 10.5% 83.9% 

* with coverage factor of 2 (i.e. 95% confidence) 
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Example A3: Dissolved iron in groundwater 

 

Measurand Uncertainty estimation 

Analyte/ 
Technique 

Unit Sector/Matrix Sampling target Purpose Design Statistics 

Dissolved 
iron/ 
ICP-AES 

mg l-1  Environment/ 
groundwater 

The groundwater 
near one selected 
monitoring well in 
a groundwater 
body 

Total 
uncer-
tainty 

Empirical 
duplicates 
used in 
validation 
and quality 
control  

Range 
method in 
absolute 
units 

 

1 Scope 

The scope is determination of the total uncertainty of the measurement of dissolved iron in a 
sampling validation study and subsequent control of sampling uncertainty during monitoring. 

2 Scenario and sampling target 

A groundwater body that is an important drinking water resource for the city of Århus, the 
second largest city of Denmark, has through surveillance monitoring been identified as at risk 
for deterioration of the quality due to intensive drinking water abstraction. An operational 
monitoring programme has been established in order to control the trend in water quality 
development.  

The groundwater body is in glacial outwash sand with Miocene sands and clays below and 
glacial till above. The geology at the site is complicated with several local aquifers 
(underground layer of water-bearing permeable rock, or permeable mixtures of 
unconsolidated materials) and aquitards (geological formation of layers comprised either of 
clay or on non-porous rock that restrict water flow from one aquifer to another). The 
groundwater body as identified is 2 km x 2 km x 10 m, starting 20–30 m below the surface. 
The natural quality of the groundwater is anaerobic without nitrate, with sulphate and reduced 
iron, but without hydrogen sulphide and methane. One of the threats to the groundwater body 
is oxygen intrusion into the aquifer as the result of the water abstraction and concomitant 
groundwater table drawdown.  

In the groundwater body, nine wells had been sampled for chemical analysis during 
surveillance monitoring, and six wells are now available for sampling. In the operational 
monitoring plan, it was decided to aim at monitoring one well twice per year. The objective of 
the operational monitoring was set to having a 95% probability of recognising a 20% quality 
deterioration. It was decided to use dissolved iron as a target parameter that would be a 
sensitive indicator of aquifer oxidation (decreasing iron concentration with increasing 
oxidation) and with redox potential as supporting evidence. Oxygen, pH, electrical 
conductivity and redox potential were used as on-line indicators of sampling stability and 
sodium, calcium and chloride as general groundwater quality parameters. Only the two key 
parameters, dissolved iron and redox potential, are discussed here. 

Meeting the monitoring objective requires a measurement uncertainty including both 
sampling and analysis of not more than 10% (comparison of two means each for two samples, 
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95% confidence interval, two-sided test) corresponding to an expanded measurement 
uncertainty of 20%. To ensure the compliance of the monitoring programme with the stated 
objective, a sampling validation study was initially conducted including all wells available 
and, based upon the results from this, a routine sampling quality control programme was set 
up for implementation with the monitoring programme for the selected monitoring well.  

The properties of the groundwater body were summarised based upon previous monitoring 
activities (surveillance monitoring). Table A3.1 shows a summary for the two key parameters 
including variability in time and space as well as measurement (sampling and analytical) 
uncertainty. 

Table A3.1: Key chemical parameters for nine wells to the groundwater body, 

surveillance monitoring 

 Redox potential Dissolved iron 

 mV mg l-1 

Mean -123 1.11 

Relative standard deviation 27% 56% 

Main cause of uncertainty 
Oxygen impact during 
sampling and on-line 

measurement 
Filtering 

 

The chemical data suggest that the groundwater composition is quite uniform over time and 
space with respect to the main components (data not shown, relative standard deviation 1.9–
16%), whereas the variability is high for the redox parameters (oxygen, redox potential and 
dissolved iron). The expected main causes of uncertainty are indicated in the table for the two 
key parameters and the causes were controlled during sampling. 

3 Sampling protocol 

Sampling was done according to the Århus County groundwater monitoring protocol, with 
permanent, dedicated pumps (Grundfos MP1) set in the middle of the screened interval of 
each well. Pump rates were 1–2 m3 h-1 (well purging) with a 10% reduction just before 
sampling. Two of the six wells were large-diameter abstraction wells equipped with high 
yield pumps. These were pumped with 40–60 m3 h-1 for well purging followed by pump rate 
reduction just before sampling. During well purging, the development in water quality was 
followed with on-line measurements of oxygen, pH, electrical conductivity and redox 
potential until stable readings and then samples were taken. A field report was filled in during 
the sampling, including pump yields and pumping times as well as water table measurements. 

4 Study design – empirical 

The empirical approach was selected for study design in order to provide estimates of 
heterogeneity in the groundwater body (between-target variation well-to-well and over time) 
and measurement uncertainty, split to show sampling uncertainty and analytical uncertainty. 

4.1 Validation  

The objective of the validation programme was to ensure that a measurement uncertainty 
meeting the set quality objective could be obtained and to describe the components of 
uncertainty in order to identify points of improvement, if required. The validation programme 
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was set up with sampling of six wells, two independent samplings per well and two sub-
samples per sample analysed, see Figure A3.1. 

 

Figure A3.1 Design outline for validation 

 
 

A total of 12 samples were taken and 24 sub-samples were sent for analysis in one sampling 
round as a validation study. 

4.2 Quality control 

The objective of the quality control programme for the operational monitoring was to ensure 
that measurement uncertainty did not increase over time during the monitoring. The quality 
control programme was set up after careful evaluation of the results from the validation study. 
Quality control was designed to include duplicate sampling, each with duplicate analysis, on 
one of the two annual sampling occasions of the monitoring programme, see Figure A3.2. In 
total, six sampling occasions with 12 samples and 24 sub-samples analysed were included in 
the first phase of the quality control programme. 

 

Ground-
water body 

Well 1 
Well 2 

 

Well 3 

 

Well 4 

 

Well 5 

 

Sample 1 Sample 2 

Analysis 1 Analysis 2 

Well 6 
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Figure A3.2 Design outline for quality control, shown for one sampling occasion 

 
 

5 Sub-sampling and analysis 

The sample pre-treatment and analytical set up for the two key parameters (redox potential 
and dissolved iron) are shown in Table A3.2. 

 

Table A3.2: Pre-treatment and analytical programme 

 Redox potential Dissolved iron 

Pre-treatment On-line analysed On-line filtered, preserved with 
nitric acid, laboratory analysed 

5.1 Sub-sampling and sample pre-treatment 

Duplicate on-line measurements/sub-samplings for laboratory analysis were done by taking 
out split sample streams and treating each stream independently. This means that the 
‘analytical uncertainty’ obtained with the duplicate design also included sub-sampling, pre-
treatment, such as filtering, and transportation. An estimate of the analytical uncertainty alone 
could be obtained from the laboratory quality control data, see Section 5.3. 

Samples were on-line filtered excluding oxygen through 0.45 µm cellulose acetate membrane 
filters and sub-samples were preserved in the field for metal analysis by acidification with 
nitric acid. Sub-samples were stored in polyethylene containers in the dark at less than 10°C 
during transport to the analytical laboratory.  

5.2 Laboratory analysis 

Analyses were performed at an independent, accredited (ISO/IEC 17025) laboratory using 
accredited methods subject to the required quality assurance and analytical quality control. 
Methods and performance data from quality control are shown in Table A3.3. 

 

Groundwater body 

Monitoring well 

 

Sample 1 Sample 2 

Analysis 1 Analysis 2 
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Table A3.3: Methods and performance data from analytical quality control for 

laboratory analyses at a levels > 0.2 mg l
-1

. 

 Method Repeatability 

sr 

Within-lab 

reproducibility, sRw 

Expanded 

uncertainty 

Detection 

limit 

Iron ICP-AES 0.95% 4.3% 8.6% 0.01 mg l-1 

 

The certified reference material (CRM) VKI Metal LL2, nominal 0.200 mg Fe l-1 was used 
for quality control with 101.9% apparent recovery (mean for 92 control results). 

5.3 Calculation methods 

The replicate data were treated using the range method. For comparison, uncertainty estimates 
were calculated by analysis of variance (ANOVA) and robust ANOVA (RANOVA) using 
ROBAN version 1.0.1 (Appendix C3).  

The applied calculation methods are demonstrated in Section 7 (below). The range 
calculations are easily done using a standard spreadsheet. 

The occurrence of systematic sampling errors was not assessed quantitatively, but the 
consistency of the obtained results was used as a qualitative control of systematic errors. As 
an example, if dissolved iron was found above 0.1 mg l-1 in the same sample as oxygen was 
determined to be above 0.1 mg l-1, this would indicate a systematic sampling and/or pre-
treatment error. Similarly, redox potential and oxygen contents were checked to correspond in 
order to control systematic errors.  

6 Results 

The data from the validation study (six different wells) using range calculations are shown in 
Table A3.4 and the detailed calculations are shown in Table A3.7. 

 

Table A3.4: Relative expanded uncertainty (%, coverage factor 2) for analysis, sampling 

and between-target (between wells) as obtained during validation using range 

calculations 

Range calculations Analyses Sampling Between-target 

Dissolved iron 1.8% 10.5% 64% 

 

For comparison, the statistical estimates are shown in Table A3.5 as obtained using ANOVA 
and RANOVA. 

Table A3.5: Relative expanded uncertainty (%, coverage factor 2) for analysis, sampling 

and between-target (between wells) as obtained for dissolved iron during validation 

using ANOVA and RANOVA calculations 

Dissolved iron Analyses Sampling Between-target 

ANOVA 1.6% 9.6% 70% 

RANOVA 1.8% 9.9% 72% 
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The statistical estimates obtained with the range statistics during quality control (six sampling 
occasions) are shown in Table A3.6. 

Table A3.6: Relative expanded uncertainty (%, coverage factor 2) for analysis, sampling 

and between-target (between occasions) as obtained during quality control using range 

calculations 

 Analyses Sampling Between-target
1 

Dissolved iron 2.5% 3.6% 9.9% 
1In the quality control, between-target variability was between sampling  
occasions – time variation for one well. 
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Table A3.7: Results and range calculations for the validation study, dissolved 

iron, basic data in bold, symbols used to describe calculations only (T: target, S: 

sample, A: analysis, R: absolute differences) 

Well S1A1 S1A2 S2A1 S2A2 R1 R2 RS+A Average 

mg l
-1

 mg l
-1

 mg l
-1

 mg l
-1

 mg l
-1

 mg l
-1

 mg l
-1

 mg l
-1

 

99.474 0.815 0.834 0.912 0.893 0.019 0.019 0.078 0.86 
99.468 1.8 1.83 1.94 1.93 0.030 0.010 0.12 1.88 
99.469 1.69 1.68 1.79 1.77 0.010 0.020 0.095 1.73 
99.916 2.62 2.61 2.83 2.84 0.010 0.010 0.22 2.73 
99.327 1.66 1.63 1.58 1.59 0.030 0.010 0.06 1.62 
99.371 1.52 1.53 1.47 1.50 0.010 0.030 0.04 1.51 

Average 0.018 0.017 0.102 1.719 

  
Stand. 

dev 0.55 

Analysis 12 = ( 14555 + 1�555 )/2 RA =  0.017 #2 = 12/1.128 sA = 0.015 
CVA =  0.89 % 

Sampling #;<2 = 1;<2555555/1.128 SS+A = 0.091 =; = >=;<2� − @ =2√2B�
 sS = 0.090 

CVS =  5.23 % 

   
  

 
  

Between 
target 

 

0.552 

=C
= >=C<;<2� − D ;<2√2 E�

 sT = 0.548 

       CVT =  32 % 
 

  

ST SA =
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No groundwater samples had measurements of dissolved oxygen above 0.1 mg l-1, 
and the low redox potential measured (-110 to -200 mV) is consistent with the 
absence of oxygen (<0.1 mg l-1) and the high dissolved iron concentrations (0.92 to 
2.8 mg l-1). 

7 Comments 

For dissolved iron measured during validation, the use of ANOVA and RANOVA 
calculations provided statistical estimates only slightly different from those obtained 
with the simple range calculations. 

The analytical uncertainty values estimated from validation and from the subsequent 
quality control (i.e. 1.9 % and 2.5 %) are broadly consistent. The sampling uncertainty 
was lower when sampling just one well on different occasions during quality control 
(3.6–3.8%) than when sampling different wells at the same time during validation 
(10–15%). Also the uncertainty between-target on different occasions was lower than 
when sampling different wells.  

If a continuous control of sampling uncertainty had been required, the control data 
could have been plotted in control charts in order to obtain an early warning of 
excessive uncertainty (random errors) for each sampling occasion. 

The number of replicates (six) in this study was less than used in most cases and the 
risk of a decreased confidence in the uncertainty estimates should be considered in 
evaluation of the results. 

The uncertainty contribution from sampling bias was only addressed through 
evaluation of the consistency of the measurements obtained from different, 
interrelated chemical parameters (oxygen, dissolved iron, redox) and the evaluation 
supported the conclusion that sampling, and sample pre-treatment had succeeded in 
avoiding bias due to oxygen impact and filter clogging. 

8 Summary 

The measurement uncertainty (% uncertainty with coverage factor 2) is summarised 
below for dissolved iron.  

The data show that the requirement for less than 20% expanded measurement 
uncertainty could be fulfilled for dissolved iron (sampling validation), and that the 
required measurement uncertainty was in reality achieved during the routine 
monitoring (sampling quality control). Furthermore, the data show that if an 
improvement of the certainty of monitoring was required, the obvious point of 
improvement would be increased monitoring density for dissolved iron (between-
target uncertainty dominating).  

 

Dissolved iron 

in groundwater 

Expanded uncertainty, coverage factor of 2 Between-target 

variability 

 Sampling Analysis Measurement  

Validation 11 % 1.9 % 11 % 32 %1 

Quality control 3.6% 2.5% 4.4 % 9.9 %2 
1In the validation study, between-target variability was between wells 
2In the quality control, between-target variability was between sampling occasions 
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Example A4: Vitamin A in baby porridge containing fruit and milled 

cereals 

 

Measurand Uncertainty estimation 

Analyte/ 
Technique 

Unit Sector/ 
Matrix 

Sampling 
target 

Purpose Design Statistics 

Vitamin A 
(as 
retinol)/ 
HPLC 

µg 100 g-1  
in powder 

Food/ 
Baby 
porridge-
powder 
containing 
fruit 

Produced 
batch 

Total 
measurement 
uncertainty 

Empirical 
duplicate 
method 

One-way 
ANOVA 
on 
concen-
tration 
values 

 

1 Scope 

The scope is to estimate the measurement uncertainty and contributions from sampling and 
analyses. The estimates are based on samples from one type of baby porridge – taken from 
10 different batches – using a sampling protocol collecting duplicate samples from each 
batch. 

2 Scenario and sampling target 

In the production of baby (infant) porridge, the vitamin A (retinol) is added as a premix 
(together with vitamin D and vitamin C). The premix is a minor ingredient. All ingredients 
are mixed thoroughly before distribution into packages. Earlier analysis indicated a bigger 
variation in analytical result between packages than expected. A measurement uncertainty of 
20–30% would be considered acceptable. The question was raised whether the variation is 
due mainly to analytical uncertainty or to sampling uncertainty. One of the theories suggests 
that the vitamin is locally unevenly distributed within the package, and therefore will give 
bigger analytical uncertainty if the test portion is too small (e.g. 3–5 g).i One possible 
explanation of the heterogeneity is that the vitamin premix aggregates in small hot spots, due 
to electrostatic interactions with the fruit particles in the porridge powder. The producers 
recommend a test portion size of 40–50 g whenever analysing vitamin A, D and C in baby 
porridge powder.  

In order to compare the measured vitamin A concentration against declared values and 
European regulatory thresholds, an estimation of measurement uncertainty is desirable. To 
determine the random component of the measurement uncertainty, an empirical approach 
using the duplicate method (see Section 9.4.2) was chosen. To estimate the systematic 
component a comparison with a reference value was made. 

3 Sampling protocol 

Normally a spot sampling approach is employed in which one sample (one package) of a 
batch is used as a screening sample by comparing its content against the declared values and 
legal limits.  
Validation – In this study two samples are collected from each of 10 different batches of one 

                                                 
i EN-12823-1 ‘Foodstuffs – determination of vitamin A by HPLC’ indicates a test sample of approximately 2–
10 g. 
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type of baby porridge powder (i.e. 10 sampling targets). Each sample is equal to one package 
of approximately 400 g powder.  
Quality control – Quality control (QC) of sampling from different types of baby porridge is 
done by collecting two samples from each of eight batches of different types of baby 
porridges (i.e. eight sampling targets). All the types of porridges contain fruit in addition to 
milled cereals. 

To ensure the quality in each package of the product at the time of the ‘best before date’ of 
the porridge powder, the producer wraps the product in an air-tight and light-protecting bag. 
It is therefore assumed the degradation of the vitamin A is negligible during normal shelf 
life. The sampling for the validation was performed at the place of production. For QC, the 
samples were purchased partly at the place of production, and partly at the retailers. When 
the samples were collected from retailers, care was taken to collect the two samples (of each 
product) at different retailers but in addition to assure the samples had the same batch 
marking. This is important to avoid adding between-batch variations to the apparent 
sampling uncertainty, as the sampling protocol in this case specifies sampling from a 
particular batch. 

4 Study design – empirical approach  

An empirical (‘top-down’) approach – duplicate method was selected to provide estimates of 
the random component of sampling uncertainty. The validation is performed on one type of 
baby porridge containing fruit and milled cereals. In the sampling for the QC different 
products of baby porridge (all containing fruit and milled cereals) are tested to see if the 
estimate for measurement uncertainty from the validation study is appropriate for different 
types of baby porridges containing fruit and milled cereals. 

4.1 Validation 

Samples are collected on-line (just after the filling operation of packages) at random times. 
Two samples (two packages, each of approximately 400 g) are collected from each of 10 
production units (batches) of one type of baby porridge powder.  
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Figure A4.1: Sampling for validation. Two samples are taken from each of 10 

production units/batches of the same type of baby porridge 

 

4.2 Quality control 

For quality control (QC) two samples are collected from one batch of each of eight different 
types of baby porridges, containing fruit and milled cereals. The porridges are products from 
three different producers. The samples (except for two types of porridges) were provided by 
two of the producers. The rest was bought at the retailer.  

Figure A4. 2: Sampling for QC. Two samples are taken from one batch of each of eight 

different types of baby porridge 

 

5 Sampling and analysis in the laboratory 

The analytical work is done by ‘The National Institute of Nutrition and Seafood Research’ 
(NIFES). The laboratory is accredited according to EN ISO/IEC 17025. 

The laboratory participates in Laboratory Proficiency Tests (FAPAS and Bipea) with good 
results (in the period 2000–2005, Z-score<1). The method was validated using a certified 

…….. Etc. 
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Test sample 2

Test sample 1
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reference material (CRM). Data concerning the laboratory performance is given in Table 
A4.1.  

Table A4.1: Methods and performance data from quality control – laboratory analyses 

Parameters Vitamin A – determined as retinol 

Method HPLC – normal phase column – UV-detection 

Repeatability 2RSD (%) = 6 

Within-reproducibility 2RSD(%) = 8 

Measurement uncertainty  14% (95% confidence interval) 

Recovery   Standard addition, in lab: 90–110% 

 Based on laboratory proficiency tests (in 
period 1999–2005), different matrixes: 88–
113%, mean recovery 100.5% 

Limit of quantification (LOQ) 0.14 mg kg-1 

CRM used NIST 2383 – baby food (mixed food composite) 

 CRM – certified level 0.80 ±0.15 mg kg-1 (95% confidence interval) 

 CRM – analysed value 0.77 ±0.14 mg kg-1 (n=28, 95% confidence 
interval) 

 

5.1 Secondary sampling  

A mechanical sample divider (Retsch) is used to split the samples. From each of the primary 
samples, four test samples are collected: two portions of approximately 3–5 g and two 
portions of approximately 40–50 g.  

 

Figure A4.3: Splitting of the primary sample to make four test samples 

 

 

…….. Etc. 
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5.2 Analyses  

The analytical method is based on EN-12823-1 (Foodstuffs – Determination of vitamin A by 
HPLC – Part 1: Measurement of all-trans-retinol and 13-cis-retinol). Retinol is saponified by 
using ethanolic potassium hydroxide containing antioxidants. Vitamin A is extracted by 
using hexane. Analysis is performed by using high performance liquid chromatography 
(HPLC), with a UV detector.  

In the validation, for each of the primary samples, two analyses are performed on test 
samples of 40–50 g and two analyses on test samples of 3–5 g. In the QC two analyses are 
performed on test samples of 40–50 g. On each test sample only one analytical determination 
is performed (no analytical duplicates). 

6 Information from the producer 

Data for estimating the ‘certified value’ of vitamin A in baby porridge are provided by the 
producer (Nestlé) of the product chosen for the validation, see Table A4.2.  

 

 

 

Table A4.2: Product data provided by the producer 

Product 
Oatmeal porridge with bananas and 
apricots (Nestlé) 

Weight of batch, including premix 

(1 batch = 2 mixing containers) 
1092 kg 

Weight of added vitamin-premix in batch 1.228 kg 

Vitamin A in premix (data from the Certificate 
of Analysis) 

9016 IU g-1 = 2705 µg g-1 (retinol) 

Vitamin A added to the batch 304 µg 100 g-1 (retinol) 

Vitamin A in ingredients according to the 
product specification 

45 µg 100 g-1 (retinol) 

Estimated ‘true value’ of vitamin A 349 µg 100 g-1 (retinol) 

Vitamin A declared as 
Retinol – (sum of trans- and cis- 
retinol) 
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7 Results   

Test sample 40 g – baby porridge  

Table A4.3: Validation data – from the same product, results given in µg 100 g
-1

 

powder 

Batch S1A1 S1A2 S2A1 S2A2 

B1 402 325 361 351 

B2 382 319 349 362 

B3 332 291 397 348 

B4 280 278 358 321 

B5 370 409 378 460 

B6 344 318 381 392 

B7 297 333 341 315 

B8 336 320 292 306 

B9 372 353 332 337 

B10 407 361 322 382 

 

S1 and S2: Primary samples from sampling location 1 and 2 of one production batch 

A1 and A2: Analyses of duplicate test samples of a primary sample S 

Analysed mean value (test sample 40 g): 348 µg 100 g-1 

 

Test sample 4 g – baby porridge 

Table A4.4: Validation data – same product, results given in µg 100 g
-1

 powder 

Batch S1B1 S1B2 S2B1 S2B2 

B1 400 491 323 355 

B2 413 159 392 434 

B3 315 391 252 454 

B4 223 220 357 469 

B5 462 343 262 293 

B6 353 265 305 456 

B7 298 234 152 323 

B8 425 263 417 353 

B9 622 189 291 272 

B10 292 397 142 568 

 

S1 and S2: Primary samples from sampling location 1 and 2 of one production batch 

B1 and B2: Analyses of duplicate test samples of a primary sample S 

Analysed mean value (test sample 4 g): 341 µg 100 g-1 
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7.1 Calculations 

The ANOVA calculation can be done by using available tools in Excel, Minitab, SPSS etc. 
In this study the calculations are done in an excel spreadsheet and the details are shown in 
Section 11 – ANOVA calculations. 

Calculation of uncertainty of analyses, one-way ANOVA, test sample 40 g 

Table A4.5: Results from ANOVA calculations – uncertainty of analyses – sum of 

squares of differences, within-groups (SS-Error). For details see Section A4.11 

SSE-Anal 

(µg 100 g-1)2 

 

Degrees of 
freedom (df) 

 

Variance 

= SSE-Anal /df 

(µg 100 g-1)2 

Standard deviation, 
SDanal 

= EAnal) (SS /df  

(µg 100 g-1) 

Relative standard deviation 
RSDanal(%) 

= (SD / X a)*100% 

16595 20 829.75 28.805 8.28 

 

Calculation of uncertainty of sampling, one-way ANOVA, test sample 4 g 

Table A4.6: Results from ANOVA calculations – uncertainty of sampling – sum of 

squares of differences. For details see Section A4.11 

SSS 

(µg 100 g-1)2 

 

Degrees of 
freedom (df) 

 

Variance 

VSamp= 

(SSS/dfS – SSEAnal/dfA)/2 
(µg 100 g-1)2 

Standard deviation, 
SDsamp 

= SampV  (µg 100 g-1) 

Relative standard 
deviation RSDsamp(%) 

= (SD / X s)*100% 

14231 10 296.7 17.22 4.95 

 

Calculation of measurement uncertainty – 40 g test sample  

The RSD (%) value from the ANOVA calculation can be used as an estimate of the standard 
uncertainty u (%). The analytical laboratory has estimated the analytical standard uncertainty 
to be 7%, which is lower than the random analytical component for this sample type of 
8.28%. The higher value of these two is used in the calculations. Combining the RSD values 
from tables A4.5 and A4.6 with Equation 1, the results can be written as in Table A4.7. 

umeas = 2 2( ) ( )
samp anal

u u        (Equation A1) 

Table A4.7: Measurement uncertainty – 40 g test sample 

Measurement uncertainty, ANOVA calculations – 40 g test samples 

 Sampling Analytical Total 

Uncertainty u (%)  4.95 8.28 9.7 

Expanded uncertainty U (%) = 2*u  

With a coverage factor of 2 (i.e. 95% 
confidence) 

 

9.9 

 

17 

 

20 
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Calculation of uncertainty of analyses, one-way ANOVA, test sample 4g 

The same calculations are used as for the test sample size of 40 g (see Table A4.14, in 
Section 11 of this example).  

Table A4.8: Results from ANOVA calculations – uncertainty of analyses, 4 g test 

sample – sum of squares of differences, within groups (SS-Error) 

SSE 

(µg 100 g-1)2 

Degrees of 
freedom (df) 

(N*2-N)=20 

Variance 

= SSE /df 

(µg 100 g-1)2 

Standard deviation, 
SDanal 

= E SS /df  

(µg 100 g-1) 

Relative standard deviation 
RSDanal(%) 

= (SD / X a)*100% 

312206.5 20 15610.325 124.9413 36.6800 

 

 

 

Calculation of uncertainty of sampling, one-way ANOVA, test sample 4 g 

Table A4.9: Results from ANOVA calculations – uncertainty of sampling, 4 g test 

sample – sum of squares of differences 

SSS 

(µg 100 g-1)2 

 

Degrees of 
freedom (df) 

 

Variance 

VSamp= 

(SSS/dfS – 
SSEAnal/dfA)/2 

(µg 100 g-1)2 

Standard deviation, 
SDsamp 

= SampV  

(µg 100 g-1) 

Relative standard deviation 
RSDsamp(%) 

= (SD / X s)*100% 

102860.25 10 -2662.15 
-2662.15  

Set to zero 
Conventionally set to zero 

 

The same calculations are used as for the test sample size of 40 g (Table A4.15, Section 11 
of this example).  

The negative value of VSamp in Table A4.9 indicates that SDSamp is small compared to the 
calculated value of SDanal. In this case, the estimates of SDanal and SDsamp using robust 
ANOVA confirmed the smaller sampling standard deviation; the robust ANOVA estimates 
were uSamp(%) = 6.9% and uAnal(%) = 30%. 

As the sampling is identical for the experiments with 40 g and 4 g test samples (and the 
uncertainty of sampling therefore should be the same), an RSDsamp (%) = 5% ( 4.95  see 
Table A4.7) is used as an estimate. 

Calculation of measurement uncertainty – 4 g test sample  

Using the calculated RSD (%) value in Tables A4.5 and A4.6 as an estimate of the 
measurement uncertainty and combining with Equation A1 the results can be written as 
follows (Table A4.10). 
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Table A4.10: Measurement uncertainty – 4 g test sample 

Measurement uncertainty, ANOVA calculations – 4 g test samples 

 *Sampling Analytical Measurement 

Uncertainty u (%)  5 36.7 37 

Expanded uncertainty U (%) = 2*u  

With a coverage factor of 2 (i.e. 95% 
confidence) 

 

10 

 

 

73.4 

 

74 

* The u (%) value is derived from calculations using 40 g test samples 

 

7.2 Effect of the size of test sample on measurement uncertainty 

The baby porridge powder looks homogeneous, and therefore a low measurement 
uncertainty (u) is expected. However, analyses of the powder indicated a surprisingly large u 
when using a test sample size of 4 g (the CEN-standard EN-12823-1 indicates a test sample 
size of approximately 2–10 g). The producers recommended using a test sample size of 40–
50 g. 

The validation tests gave the following results 

Table A4.11: Comparing measurement uncertainty – test samples of 40 g and 4 g  

Test sample size Measurement 
uncertainty (umeas) 

Expanded measurements 
uncertainty Umeas 

40 g test sample 9.7% 20% 

4 g test sample 37% 74% 

 

It can be concluded that u40g << u4g. A Umeas of approximately 20% is acceptable, using the 
manufacturer’s criterion of 20–30%, while a Umeas of 74% is considered to be too high, 
taking into account the matrix and production conditions of this type of product. 

It can therefore be concluded that a test sample weight of 4 g is not ‘fit for purpose’ when 
analysing vitamin A (retinol) in baby porridge powder containing milled cereals and fruit. A 
test sample size of 40–50 g is recommended. This also supports the theory that the vitamin is 
unevenly distributed in the product, possible as local ‘hot spots’ due to electrostatic 
interactions.  

7.3 Quality control 

According to Section 13.2.2 of this Guide, the principal tool in quality control is replication. 
This is minimally executed by taking two samples from each target by a complete (and 
suitably randomised) duplication of the sampling protocol. There is only a need to analyse 

the sample once and the difference between the results 1 2D x x= -  is calculated. In this 

study each sample was analysed twice, but the comparisons were made between one analyses 
of each sample (double set).  

In the quality control study, test portions of 40 g were used. According to declarations, the 
products contain different amounts of vitamin A. 
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Table A4.12: Quality control data for test portion 40 g of different products,  

µg 100 g
-1

 powder. 

Product Producer Porridge powder ingredients S1A1 S1A2 S2A1 S2A2 

P1 1 Oat, rice and pear 322 319 350 375 
P2 1 Oat, rye, rice and pear 332 317 358 393 
P3 1 Wheat, banana and apple 443 430 461 388 

P4 1 Wheat and apple 318 383 390 334 

P5 2 Oat, rice and banana 252 219 265 227 
P6 2 Wheat and apple 274 239 233 217 
P7 2 Oat, rice and apple 206 225 198 195 

P8 3 Wheat, spelt, oat and apple (organic product) 392 335 375 416 

 

S1 and S2: Primary samples (laboratory samples) from sampling locations 1 and 2 of one 
batch from each product. 

A1 and A2: Analyses on two test samples from each laboratory sample. 

 

 

 

Quality control – calculation and control chart 

The validated uncertainties of sampling and analysis are usamp and uanal respectively. The 
construction of a control chart is described in Section 13.2. In the case of baby porridge (40 g 
test sample) the following calculations can be made:  

Warning limit:  2 2 2 22.38* 2.83* 4.95 8.28 % 27%anal sampWL u u=  =  =  

Action limit:  2 23.69* 4.95 8.28 % 36%AL =  =  

Central line:  2 21.128* 4.95 8.28 % 11%CL =  =  

The calculated D (%) in Table A4.13 can be compared directly with the action limit, or the 
results can be presented in a control chart, see Figure A4.4.  
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Table A4.13: Quality control: calculation of differences D and D (%) – between samples 

from a batch (µg 100 g
-1

 powder) 

Product Analyses 

Sample S1 

XS1 

Sample S2 

XS2 1 2S SD x x= -  x  

 

(%) ( / ) *100%D D x=
 

P1 A1 322 350 28 336 8 

P2  332 358 26 345 8 

P3  443 461 18 452 4 

P4  318 390 72 354 20 

P5  252 265 13 259 5 

P6  274 233 41 254 16 

P7  206 198 8 202 4 

P8  392 375 17 384 4 

P1 A2 319 375 56 347 16 

P2  317 393 76 355 21 

P3  430 388 42 409 10 

P4  383 334 49 359 14 

P5  219 227 8 223 4 

P6  239 217 22 228 10 

P7  225 195 30 210 14 

P8  335 416 81 376 22 
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Figure A4.4: Control chart: quality control analyses of vitamin A in baby porridge 

containing cereals and fruits 

 
 

The control chart in Figure A4.4 shows that when collecting duplicated samples from the 
same batch, the difference between analytical results D (%) is smaller than the action limit. 
All the calculated difference are in fact smaller than the warning limit of 27%. 

The measurement uncertainty determined in the validation step is therefore considered 
suitable for the quality control of the sampling of baby porridge containing milled cereals 
and fruit.  

If the normal procedure is to analyse one sample from each batch, it is recommended that 
duplicate samples are collected from the same batch at least in one of ten of the sampled 
batches. 

Measurement uncertainty 

Sampling uncertainty 

Calculations from the validation study gave an expanded sampling uncertainty Usamp (%) = 
10% (40 g test sample – see Table A4.7). The calculated uncertainty does not include 
contributions to the uncertainty due to ‘between protocol’ and ‘between samplers’ 
differences.  

Analytical uncertainty 

Calculation from the validation study gave an expanded measurement uncertainty of 
analyses (Uanal) of 17% – 40 g test sample. The laboratory reports their own estimation of the 
analytical uncertainty (see Table A4.1): 2*RSDinlab(%) = 14%. 2*RSDinlab(%) is used as an 
estimate of Uanal in the laboratory. The Uanal found in the validation study was at the same 
level but still a little bigger than the Uanal reported by the laboratory.  

The certified reference material (CRM) used is 2383 (NIST) – baby food composite. The 
CRM is a mix of different foods of plant and animal origins – and the uncertainty found 
when analysing the CRM might not be identical with that found when analysing baby 
porridge powder. Laboratory data for the CRM 2383 is included in the table below. 
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CRM 2383 
Mean value mg 
kg-1 U (%)95% 

Laboratory 
bias (%) 

Certified 0.80 ± 0.15 18.8 - 

Analysed 0.77 ± 0.14 18.2 - 3.75 

 

The measurement uncertainty and the bias determined for the CRM could be allowed for in 
the analytical measurement uncertainty (as in the NordTest UFS Guide, Example 2), but as 
the matrix in the validation study is different from that for the CRM used, we chose not to 
include it in this study. 

Total measurement uncertainty 

Calculations from the validation study gave an expanded measurement uncertainty Umeas(%) 
= 20% (40 g test sample – see Table A4.7).  

Systematic bias 

The laboratory reports a recovery of normally 90–110%. Recovery based on laboratory 
proficiency tests 1999–2005: 88–113%. The results for the PT indicate no (or very small) 
systematic bias. Analyses of CRM 2383 in the laboratory gives a mean analysed value of 
96.3% of the certified value – which indicates a small bias (-3.7%). As the matrix of the 
CRM ‘baby food composite’ is different to the baby porridge, and the analytical method 
includes an extraction, the bias determined when analysing the CRM might not be 
representative for the analyses of baby porridge.  

In the validation study, the mean value of retinol was determined to be 348 µg 100 g-1 (when 
using a test sample of 40 g). According to data provided by the producer (see Table A4.2), 
the ‘true value’ for retinol was calculated to be 349 µg 100 g-1 porridge powder. This gives a 
recovery of 99.7% of the ‘true value’. This indicates that the systematic error due to 
sampling and analyses is small and might be negligible when analysing baby porridge-
powder containing milled cereals and fruits – on the condition that a test sample of 40–50 g 
is used. 

8 Comments  

When a test sample of approximately 40 g is used, the retinol concentration C in baby 
porridge-powder containing milled cereals and fruit should be reported with the expanded 
measurement uncertainty, i.e. C±20% of the measured value C (95% confidence).  

When baby porridge-powder containing milled cereals and fruit is to be analysed, it is 
recommended to use a relatively large test sample of approximately 40–50 g and not 2–10 g 
as indicated in the official CEN method (EN-12823-1). As the analytical uncertainty (40 g 
test sample) was bigger than the normal analytical uncertainty of the laboratory, even larger 
samples than 40 g might be considered.  
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9 Summary 

Measurement uncertainty for 40 g test samples Sample 

 Sampling Analytical Total Typical between-target variation 

RSDB(%) of the mean values of 
analyses of the batches in the 
validation test (see Table A4.15) 

Uncertainty u (%) = 
RSD (%) 

4.95 8.3 9.7 8.2 

#Expanded uncertainty 
U (%) = 2*u 

9.9 16.6 19.4 16.4 

 
# With a coverage factor of 2 (i.e. 95% confidence) 
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11 ANOVA calculation, vitamin A in baby porridge – details 

Calculation of uncertainty of analyses, one-way ANOVA, test sample 40 g 

Table A4.14: ANOVA calculations – uncertainty of analyses – sum of squares of 

differences, within groups (SS-Error) 

 Analyses (µg 100 g-1) 
Mean value – each 

sample 

(µg 100 g-1) 

Squares of differences – 

within groups (µg 100 g-1)2 

Sample A1 =xi j =xi1 A2 = xi j = xi2 ix  = ( xi1+ xi2)/2 (xi- x i)
2 

B1-S1 402 325 363.5 1482.25 

B2-S1 382 319 350.5 992.25 

B3-S1 332 291 311.5 420.25 

B4-S1 280 278 279 1 

B5-S1 370 409 389.5 380.25 

B6-S1 344 318 331 169 

B7-S1 297 333 315 324 

B8-S1 336 320 328 64 

B9-S1 372 353 362.5 90.25 

B10-S1 407 361 384 529 

B1-S2 361 351 356 25 

B2-S2 349 362 355.5 42.25 

B3-S2 397 348 372.5 600.25 

B4-S2 358 321 339.5 342.25 

B5-S2 378 460 419 1681 

B6-S2 381 392 386.5 30.25 

B7-S2 341 315 328 169 

B8-S2 292 306 299 49 

B9-S2 332 337 334.5 6.25 

B10-S2 322 382 352 900 

Mean value of measurements:  

X a =1/20 * 
20

i 1=
 x i  = 347.85 µg 100 g-1 

2
SS-Error (SSE): 

= 
20

i 1=
 [(xi1- x i)

2+(xi2- x i)
2]= 

20

i 1=
 2* (xi- x i)

2 

SSE 

(µg 100 g-1)2 

Degrees of 
freedom (df) 

(N*2-N)=20 

Variance 

= SSE /df 

(µg 100 g-1)2 

Standard deviation, 
SDanal 

= E SS /df  

(µg 100 g-1) 

Relative standard deviation 
RSDanal(%) 

= (SD / X a)*100% 

16595 20 829.75 28.80538 8.280978 

Notes on Table A4.14.  

1. Calculation of SS-Error – in this case two test samples are analysed for each laboratory sample, therefore: 

         
20 20

2 2 2 2 2

1 2 E 1 2 1
1 1

SS 2i i i i i i i i i i

i i

x x x x x x x x x x
= =

 - = -  = -  - = -    
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If the number of test samples analysed is greater than two, the squares of differences will be not be equal and the calculation 

to be done is the following:   SSE = 
20

i 1=
  2

j 1

n

ij ix x
=

-   

2. df = (N*n-N)=(20*2-20)= 20 where N is the number of samples and n is the number of test samples analysed of each 
batch. 

Calculation of uncertainty of sampling, one-way ANOVA, test sample 40 g (µg 100  g-1 
powder) 

Table A4.15: ANOVA calculations – uncertainty of sampling – sum of squares of differences  

S1A1=xi1 S1A2=xi2 S2A1=xi3 S2A2=xi4 ix  

2

1 2

2
i i

i

x x
x

 - 
 

 

2

3 4

2
i i

i

x x
x

 - 
 

 

402 325 361 351 359.75 14.0625 14.0625 

382 319 349 362 353 6.25 6.25 

332 291 397 348 342 930.25 930.25 

280 278 358 321 309.25 915.0625 915.0625 

370 409 378 460 404.25 217.5625 217.5625 

344 318 381 392 358.75 770.0625 770.0625 

297 333 341 315 321.5 42.25 42.25 

336 320 292 306 313.5 210.25 210.25 

372 353 332 337 348.5 196 196 

407 361 322 382 368 256 256 

2 2 2 210
1 2 1 2 3 4 3 4

i 1

2 210
1 2 3 4

i 1

2 2 2 2

2* 2* 14231
2 2

i i i i i i i i
Samp i i i i

i i i i
i i

x x x x x x x x
SS x x x x

x x x x
x x

=

=

           = -  -  -  -        
         

     = -  - =    
     




 

Mean value of all measurements x = 347.85 RSDSamp(%)=(SDSamp/ x )*100%= 4.95% 

SSEAnal = 16595 (see Table A4.14) 
dfS =10 (see table note) 

dfA = 20 (see Table A4.14) 

Variance VSamp= (SSS/dfS – SSA/dfA)/2 

= (14231/10 – 16595/20)/2 = 296.675 
SDSamp = sampV  = 17.224 

Notes on Table A4.15. 

1. The difference d between the mean value x of the two values 1 2

2
i i

x x 
 
 

 and  
3 4

2
i ix x 

 
 

to each of the values 

are identical. The expression could therefore be written as 

2210 10
1 2

i 1 i 1

4* 4*
2

i i
Samp i i

x x
SS d x

= =

  = = -  
   

   

2. dfs=  (NB*n-NB)=(10*2-10)= 10 where NB is the number of batches and n is the number of primary samples (= 
laboratory samples) analysed for each batch. 

ix
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Example A5: Enzyme in chicken feed  

 

Measurand Uncertainty estimation 

Analyte/ 
Technique 

Unit1 Sector/ 
Matrix 

Sampling 
target 

Purpose Design Statistics 

Enzyme/ 
HPLC 

% m/m 
(i.e. mass 
fraction) 

Food & 
Feed/ 
Chicken feed 

25 kg bag Total 
uncertainty 
(weak links 
in 
measurement 
chain) 

Modelling 
with 
sampling 
theory (of 
Gy) 

Summation 
of 
component 
variances 
in relative 
units 

1Including reporting base 

 

1 Scope 

The scope is to estimate the sampling uncertainty with the given sampling protocol by 
applying Gy’s sampling theory (Section 10.2). The analyte is an added enzyme 
ingredient in the feed. Sampling theory provides realistic estimates only if all 
sampling and sample splitting operations are carried out obeying the rules of sampling 
correctness; it is assumed in this example that no gross errors are present and that 
‘incorrect sampling errors’ are negligible.  

2 Scenario and sampling target 

An enzyme product is used as an additive in chicken feed (density = 0.67 g cm-3). The 
nominal concentration of the enzyme is 0.05% m/m. The enzyme powder has a 
density of 1.08 g cm-3. Powders are carefully mixed. The size distribution of the 
enzyme particles was known and it was estimated that the characteristic particle size 
was d = 1.00 mm and the size factor was g = 0.5. The purpose of this exercise is to 
estimate the total uncertainty of the protocol (i.e. as fundamental sampling error, 
Section 10.2.7 and Figure 4) used for estimating the average content in each 25 kg bag 
employed to ship the product to customers.  

3 Study design, using a modelling approach (‘bottom-up’) 

A model is constructed using sampling theory as described in Section 10.2. The 
parameters are either measured directly, or estimated, and assumed to be single values 
and to be constant within and between each bag. 

4 Sampling and analysis in the laboratory 

The actual concentration of the enzyme in the sampling target, which is identified as a 
25 kg bag, is estimated by taking a 500 g primary sample from it. 

The material from the primary sample is ground to a particle size of <0.5 mm. Then 
the enzyme is extracted from a 2 g test portion by using a suitable solvent and the 
concentration is determined by using liquid chromatography. The relative standard 
deviation of the chromatographic measurement, estimated from the laboratory quality 
control data, is 5%. 
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5 Results 

To estimate the fundamental sampling error (FSE, Section 10.2.7, Figure 4) of the two 
sampling steps, we have to evaluate the material properties (Table A5.1). 

Table A5.1: Input values for estimation of sampling uncertainty by the modelling 

approach, using sampling theory 

Primary 

sample 

Secondary sample Comment 

M1 = 500 g M2 = 2.0 g Sample sizes 

ML1= 25,000 
g 

ML2 = 500 g Lot (sampling target) sizes 

d1 = 0.1 cm d2 = 0.05 cm Particle sizes 
g1 =  0.5 g2 =  0.25 Estimated size distribution factors 

Both samples  
aL = 0.05% m/m Mean concentration of enzyme in the lot 
= 100% m/m Enzyme concentration in enzyme particles 

c = 1.08 g cm-3 Density of enzyme particles 

m = 0.67 g cm-3 Density of matrix particles 

f  = 0.5 Default shape factor for spheroidal 
particles 

 = 1 Liberation factor for liberated particles  
 

These material properties give for the constitution factor (Equation 7) the value c = 
2160 g cm-3 and for the sampling constants (Equation 6) C values 

C1 = 540 g cm-3 and C2 = 270 g cm-3  

Equation 6 can be used to give estimates of the standard deviation for each sampling 
step (as estimates of the standard uncertainty).  

sr1 = 0.033 = 3.3%   …. Primary sample 

sr2 = 0.13 = 13%   …. Secondary sample 

sr3 = 0.05 = 5%   …. Analytical determination 

The total relative standard deviation (st, combined uncertainty) can now be estimated 
by applying the rule of propagation of errors; for i errors we have: 

2 0.143 14.3 %
t ri

s s= = =  

The relative expanded uncertainty, with a coverage factor of 2, is therefore 28.6% 
(excluding analytical uncertainties associated with systematic effects, such as 
analytical bias). 

6 Comments 

The largest source of uncertainty in the whole measurement process is identified as 
that generated in preparing the test portion (2 g) for the extraction of the enzyme. 

No additional allowance has been made for uncertainties associated with systematic 
effects during analysis, and incorrect sampling errors (and sampling bias) have been 
assumed to be negligible. 
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7 Assessment of fitness for purpose of these measurements 

If it is decided that the overall uncertainty of 28.6% is not fit for purpose (Section 16), 
then it is the step in which the test portion is prepared that needs to be modified, to 
reduce the overall uncertainty. Either a larger sample should be used for the 
extraction, or the primary sample should be pulverised to a finer particle size, 
whichever is more economic in practice. The model can also be used to predict either 
the increase in mass, or reduction in particle size, that is required to achieve the 
uncertainty that will be considered fit for purpose (e.g. Appendix E). 

8 Reporting and interpretation 

Measurement of the enzyme concentration reported for each 25 kg bag should have an 
attached uncertainty of 28.6% of the concentration value. The continued use of this 
uncertainty value will depend on the periodic checking of the validity of the values 
and assumptions used in its calculation.  

9 Summary  

 

Measurement uncertainty* 

Sampling Analytical Total 

26.8% (rel) 10.0% (rel) 28.6% (rel) 

* with coverage factor of 2 (i.e. 95% confidence) 
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Example A6: Cadmium and phosphorous in agricultural top soil by 

modelling approach 

 

Measurand Uncertainty estimation 

Analyte/ 
Technique 

Unit Sector/ 
Matrix 

Sampling 
target 

Purpose Design Statistics 

Cd: GF-ZAAS 
direct solid 
sampling  

 

P: Ca-Acetate 
Lactate (CAL) 
method 

mg kg-1  

to air dried 
basis 

Environ- 
mental/ 
agricultural 
top soil 

Arable soil  

– 143 x 22 m, 
depth 30 cm 

Total 
uncertainty 
(with 
contributions 
from each 
sampling 
effect)  

Modelling 
approach 
(using 
exploratory 
measure-
ments for 
single 
effects) 

Summation 
of 
component 
variances in 
relative 
units 

 

1 Scope 

Estimation of the overall uncertainty of measurement by summation of individual 
uncertainty contributions from sampling, sample preparation and analysis using the 
modelling approach. 

2 Scenario and sampling target  

Investigation aims to estimate the mean concentration of cadmium and phosphorus in top 
soil of a target that is an area of arable land of 0.32 hectare (specification of the measurand). 
Sampling used composite samples in a protocol that is commonly applied to agricultural 
control. 

3 Sampling protocol 

The target area was sampled using a stratified protocol, with a sampling density of 
approximately 20 increments per hectare, to a depth of 30 cm, using a soil auger. Stratified 
random sampling is defined in Appendix C2.3. 

4 Study design – cause-and-effect modelling approach (Section 10.1) 

4.1 Identification of effects in the measurement 

The following sources can be considered as potential significant contributors to the 
uncertainty in the general case. 

4.1.1 Sampling 

The spatial distribution of the analyte over a two-dimensional object creates two different 
uncertainty components ‘long range point selection error’ (Appendix C2.3): 

 The sampling variance of the analyte content between composite samples from different 
locations characterises the ’statistical distribution’ of the analyte over the target area. 
This value often depends on the distance between sampling points/sampling locations. 

 If the spatial pattern of the analyte on the area is not represented by the sampling pattern 
(sampling strategy), sampling bias may occur. 
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With the use of a sampling tool, different effects may appear, such as point materialisation 
error (Figure 3). This may occur due to an ill-defined reference level of the soil (e.g. due to 
undulation of the soil surface or difficulties in the definition of the horizons), or variation in 
the actual sample depth or in soil density (e.g. by moisture content), or by selective loss of 
soil material from the sampling device.  

These effects only lead to an uncertainty contribution, if there is a depth gradient in the 
analyte content (a ‘third dimension’ to the target body). For this reason, these effects, which 
are difficult to determine one by one, are summarised collectively as the ‘depth-effect’. 

4.1.2 Sample preparation 

The physical sample preparation comprises the step from the field sample to the laboratory 
sample. Mechanical treatment, such as disaggregation, sieving, grinding and splitting steps, 
reduce the amount of soil material. With these steps errors may arise due to variation in 
duration and forces of mechanical treatment, heterogeneity, segregation of different soil 
(particle) fractions and particles size distribution. A periodic point selection error (Figure 3) 
may occur due to variation in moisture content of the dried soil sample by 
sorption/desorption of water from air to an equilibrium state (depending on the humidity and 
properties of the sample material, e.g. particle size). 

4.1.3 Analysis 

The analysis is the third step of the measurement process, which is connected with different 
kinds of effects that give rise to uncertainty contributions. The analytical uncertainty of the 
laboratory samples can be estimated by previously published procedures [1, 40]. The 
separation of the laboratory sample into analytical test samples will add to the sampling 
uncertainty; specifically, another ‘fundamental error’ may occur. However, the random 
component of this sampling effect is included in the analytical repeatability precision 
between test samples. A significant systematic component should be avoided by proper 
mixing of the sampling powder. 

4.2 Cause-and-effect diagram 

Figure A6.1 shows the ‘cause-and-effect diagram’ for the measurement process. In the 
sampling and sample preparation steps the sources of uncertainty contributions are given; for 
the analysis, only the analytical quality parameters are indicated. 

4.3 Model equation 

The ‘input quantities’ of the sampling effects discussed above are not constituent parts of the 
equation from which the measurement result is calculated. An appropriate model equation 
for the overall measurement process can be established, however, by introducing respective 
nominal correction factors on the analytical result:  

 
where  

xsite  = measurement result 

analyx   = mean from the analysis of test samples 

fb-loc = correction factor for deviation ‘between locations’ 
fstrat = correction factor for bias due to sampling strategy 
fdepth = correction factor for the ‘depth effect’ 
fprep = correction factor for errors during mechanical sample preparation 
fdry = correction factor for deviation of moisture content 

xsite = xanaly ´ fb-loc ´ fstrat ´ fdepth ´ fprep ´ fdry
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Figure A6.1: Cause-and-effect diagram for soil sampling on arable land (Rw is within-

laboratory reproducibility) 

 
If no significant bias is detected, all correction factors can be set to unity so that the best 
estimate for the measurand is given by: 

 
Because of the simplicity of the model equation (only factors), and assuming independence 
between the factors, the combined uncertainty can be achieved by variance addition of the 
relative standard uncertainties from the various effects: 

 

5 Sampling and analysis in the laboratory 

The sample mass was reduced by cone and quartering, air dried and sieved to select the grain 
size <2 mm. 

The analysis was performed by the following methods for cadmium using Zeeman-GF-AAS 
(‘direct solid sampling’) and for phosphorus using the Calcium-Acetate-Lactate (CAL) 
method. 

6 Results of evaluation of individual effects in this case study 

The estimation of the standard uncertainty from the analyte distribution over the target area 
is based on a modified increment sampling based on the sampling protocol. For elucidation 
of the outcome of single effects additional exploratory measurements have been carried out. 

6.1 Variation ‘between locations’ 

The area was divided into nine squares (A, B, C ´ 1, 2, 3), and three increments are taken 
from each of five squares (‘crosswise’ over the area). The increments from each square are 

xsite
sample preparation

spatial analyte pattern

sampling strategy  

RW

bias

Long range 

point selection

Analysis

0 - level

Point

materialisation

"depth effect"

depth 

moisture content  

loss of material 

Mechanical sample 

preparation

mech. force

heterogeneity

selective loss

number of increments

sampling pattern

Cref

drying

temperature

material properties 

humidity

xsite
sample preparation

spatial analyte pattern

sampling strategy  

RW

bias

Long range 

point selection

Analysis

0 - level

Point

materialisation

"depth effect"

depth 

moisture content  

loss of material 

Mechanical sample 

preparation

mech. force

heterogeneity

selective loss

number of increments

sampling pattern

Cref

drying

temperature

material properties 

humidity

xsite = xanaly

usite = uanaly

2 ´ ub-loc

2 ´ ustrat

2 ´ udepth

2 ´ uprep

2 ´ udry

2



Example A6 

UfS:2019.P2  Page 84 

combined, resulting in five separate composite samples. These samples are treated and 
analysed separately. The mean of the single results constitutes the measurement result in 
agreement with the specification of the measurand. 

The analytical results for both analytes under investigation are shown in Table A6.1. The 
standard deviation between these values (ssqr) reflects the variation between the composite 
samples for each nominate square. 

The standard uncertainty in the overall mean value (i.e. the measurement result) due to this 
effect can be estimated by considering the number of samples ‘between locations’ using the 
standard error on the mean: 

-

-

sqr

b loc

b loc

s
u

n
=  

Table A6.1: Measured concentration of cadmium and phosphorus in five squares 

Square 

Cd 

mg kg-1 

P 

mg kg-1 

A1 0.270 124 

A3 0.285 112 

B2 0.343 120 

C1 0.355 118 

C3 0.343 105 

sqr

sqr

x

s
 

0.319 

0.039 

(12%) 

116 

8.0 

(6.5%) 

ub-loc 5.4% 2.9% 

The table shows the mean value across the five squares (the measurement result), the standard 
deviation calculated from these values (ssqr), and the estimated uncertainty contribution from the 
standard error on the mean (ub-loc). 

6.2 Sampling strategy 

Inspection of the analyte contents between the squares (Table A6.1) shows no notable 
differences for phosphorus in any direction (neither vertical, nor horizontal, nor diagonal). 
So, no significant bias (e.g. 0.5% ) in the measurement result can be expected for this 
analyte from this source.  

For cadmium both A squares show a considerably lower analyte content than the B and C 
squares. Such a gradient was not unexpected for this particular area because the C squares 
lay on a forest boundary, while the A squares border on grassland and the 1  and 3 squares 
lay between other arable land areas. It is well known that in the upper horizon of forest soils 
accumulation of heavy metal occurs, which can influence adjacent areas.  

A ‘hypothesis-based’ sampling pattern was applied to look for such an effect. However, the 
values measured with this sampling strategy only detected a minor systematic effect. A 
standard uncertainty of ≤ 1% is therefore inserted into the uncertainty budget for cadmium 
for sampling strategy.  
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6.3 ‘Depth effect’ 

For revealing the collection of effects referred to as the ‘depth effect’, the following 
exploratory experiment was performed. 

Increment cores are taken for a depth of 35 cm within the five ‘test squares’. From these 
cores segments of 25–30 cm and of 30–35 cm are separated and combined. Table A6.2 
shows the analytical results for these samples.  

Table A6.2: Depth experiments 

 Cd 

mg kg-1 

P 

mg kg-1 

c- (25–30 cm) 0.14 47 

c+ (30–35 cm) 0.10 35 

x - 0.34 124 

x+ 0.30 109 

x 0.04 15 

udepth 3.5% 3.7% 
The table shows the average content of the depth horizons from five cores from different locations, the 
calculated content limits and the estimated uncertainty contribution 

Both analytes show a statistically significant negative gradient with respect to depth. The 
uncertainty due to the depth effect was estimated by considering the analyte content of the 
soil layers below and above the reference depth (c-, c+) by the following model. 

The maximum variation in the sampling depth is assumed to be not more than 10% (i.e. 27–
33 cm). From these data the lower and upper content limits (x -, x+), related to the mean 
content of an auger core of nominal depth, are estimated according to: 

- 0.1 _ 0.1
_

0.9 1.1

x c x c
x x 




= =�  

The difference between x- and x+ (xdepth) is assumed to be the maximum deviation from the 
mean content due to depth variation of the increments. 

If a rectangular distribution for the deviation in depth is assumed, the standard uncertainty in 
the mean value (Table A6.2) can be estimated by: 

/ 2

3
depth

depth

x
u


=  

6.4 Splitting 

The primary field samples were split in half, seven times by a coning and quartering 
procedure resulting in a laboratory sample that was 1/64 of the original mass. 

To reveal the ‘splitting effect’ the following exploratory experiment was performed. 

In the first splitting step the second half of the material was not discarded, but considered as 
a duplicate sample, which was treated like the original sample and analysed separately. Table 
A6.3 shows the relative standard deviations between the duplicates of each of the five 
squares for both analytes. 

As a simple approximation, the mean of the relative standard deviations is taken as the 
standard uncertainty of the splitting step  
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split splitu s=  

Note: The observed large spread of standard deviations between the duplicates must be 
expected. The 2-distribution for df = 1 shows high probability for very low values and a 
moderate probability for large values.  

 

Table A6.3: Relative standard deviations between duplicate split samples and the mean 

of these standard deviations for both analytes 

Square 

Cd 

(%) 

P 

(%) 

A1 0.44 1.49 

A3 9.17 2.80 

B2 5.32 0.84 

C1 3.24 8.88 

C3 0.44 1.81 

splits  3.7 3.3 

 

6.5 Drying 

For the drying effect no experiment was performed, but information from the literature was 
used to estimate the effect. A moisture content between 1 and 3% has been found for a large 
number of air-dried soil samples [62]. According to the sampling protocol, the measurand 
refers to air-dried soil material. Consequently, no correction for moisture content is required 
for the concentration measurements. However, a range of xdry = 2% difference in moisture 
content must be considered. Assuming a rectangular distribution across this range, the 
standard uncertainty for both analytes can be estimated as: 

/ 2
0.6%

3
dry

dry

x
u


= =  

6.6 Analysis 

The uncertainty from the analytical process for cadmium and phosphorus (Tables A6.4 and 
A6.5) were estimated from quality control data, using the Nordtest-approach [37].  
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Table A6.4: Standard uncertainty components and combined uncertainty in the 

analysis of the soil sample for cadmium 

RW 

 

Uncertainty from within-laboratory reproducibility, 
evaluated from the repeatability standard deviation of 
the mean from n=10 test samples and the instrument 
stability over the working session of one day 

uRw = 3.6% 

cref Uncertainty of the certified value of a CRM uref = 2.7% 

bias No uncertainty contribution from laboratory bias, 
because the results are corrected for the day-to-day bias 
of the CRM measurements 

- 

sbias Uncertainty contribution from the standard deviation of 
the mean (n=3) from the day-to-day analysis of the 
CRM 

ubias = 2.7% 

 Combined analytical uncertainty uanly = 5.2% 

 

Table A6.5: Standard uncertainty components and combined uncertainty in the 

analysis of the soil sample for phosphorus 

RW 

 

Uncertainty from within-laboratory reproducibility, 
evaluated from the repeatability standard deviation of 
the mean from n=1 test samples  

uRw= 1.7% 

cref  
bias 

sbias 

Uncertainty for the trueness of the results estimated as 
the reproducibility precision sR from one inter-
laboratory comparison (worse case estimate) 

ubias = 9.5% 

 Combined analytical uncertainty uanly = 9.7% 

 

6.7 Uncertainty budget and measurement result 

Table A6.6 lists the evaluated standard uncertainty from the effects under consideration. The 
combined uncertainty is calculated from these contributions. 
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Table A6.6: Relative standard uncertainties from the considered effects and the 

combined uncertainty for both analytes 

 

Effect 

Relative standard 

uncertainty (%) 

Cd P 

Variation ‘between locations’ 5.4 2.9 

Sampling strategy 1.0 0.5 

Depth  3.5 3.7 

Splitting 3.7 3.3 

Drying  0.6 0.6 

Analysis 5.2 9.7 

Combined uncertainty 9.1 11.3 

 

Measurement result:  

Cd:  0.32 ± 0.06 mg kg-1 

P:   116  ±  26 mg kg-1 

(coverage factor of 2 for approx. 95% confidence level) 

7 Comments 

7.1 Contribution of effects 

Table A6.6 shows that the sampling/sample preparation process contributes considerably to 
the overall measurement uncertainty. To recognise and to assess the relevance of single 
effects/process steps several aspects must be considered: 

7.1.1 The ‘between-location’ effect depends on the homogeneity of the target area and the 
total number of increments taken from each square. Former investigations show that 20 
increments per hectare of arable land yield an uncertainty contribution in the order of the 
analytical uncertainty. 

7.1.2 The error due to the sampling strategy is difficult to quantify, but can often be much 
larger than that observed in this case study. Practically it can only be controlled by ‘expert 
judgement’ of the large-scale distribution of the analyte over the area and the choice of an 
appropriate sampling strategy. 

7.1.3 With the model calculation of the depth effect, it is treated as an unknown systematic 
error, that is, the deviation in depth occurs with all increments (more or less) in the same 
direction. This may be realistic under specific conditions; for example, a dry sandy soil tends 
to drop out at the lower end of the auger so that the average increment depth would be too 
small. If such an effect is detected, then the correction of the systematic deviation is possible 
and only the random error component must be considered (i.e. the uncertainty decreases with 
the factor of 1/√nincr). Training of the sampler may reduce this ‘point materialisation error’. 

7.1.4 The splitting effect is hard to control because initial mass reduction is often performed 
in the field. It can contribute significantly if the method of mass reduction is inappropriate or 
performed carelessly. Consequently, training of the sampling personnel is of great 
importance. 
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7.1.5 The effect of moisture content for air dried soil samples seems to be negligible in this 
case.  

7.1.6 The uncertainty of the analytical process can contribute the dominating proportion to 
the combined measurement uncertainty (e.g. for cadmium). It can be controlled if the 
standard methods of analytical quality assurance are adhered to (e.g. periodical use of CRMs 
and participation on inter-laboratory comparisons). Uncertainty from this source may be 
dominant when the analyte concentration is close to the analytical detection limit. 

7.1.7 Effects that were not considered in this case study include the duration and extent of 
the forces within the grinding and sieving process, and the wetness of the soil body during 
the sampling process. The influence of these effects was considered not to be significant, 
although these assumptions should be verified. 

8 Assessment of fitness for purpose of these measurements 

For a routine measurement according to the sampling protocol one composite sample from 
approximately 10 increments must be analysed in duplicate. 

In this case study for estimation of uncertainty contributions from single effects, 10 
additional increments are taken and 20 (composite) samples are prepared and analysed in 
total. 

This additional effort and cost is not appropriate for routine measurements. However, if 
measurements on arable land are the main type of investigation conducted by the laboratory, 
such an exploratory investigation might be valuable for getting a typical value of the 
‘sampling error’ component for these measurements. Furthermore, an evaluation of the error 
components (i.e. uncertainty budget) will also be useful to optimise the measurement 
process. 

9 Reporting and interpretation 

Measurements of the mean concentration for this area of top soil have expanded uncertainty 
values that can be expressed as either 0.06 mg kg-1 or 18.2% of the concentration value for 
cadmium, and 26 mg kg-1or 22.6% for phosphorus. 

10 Summary 

 

 Measurement uncertainty* 

Analyte Sampling Analytical Total 

Cd 15.0% 10.4% 18.2% 

P 11.6% 19.4% 22.6% 

* with coverage factor of 2 (i.e. for 95% confidence) 
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Appendix B: Terminology 

 

Accuracy Closeness of agreement between a test result or measurement result 
and the true value 

Notes: 

1 In practice, the accepted reference value is substituted for the true 

value. 

2 The term “accuracy”, when applied to a set of test or measurement 

results, involves a combination of random components and a common 

systematic error or bias component. 

3 Accuracy refers to a combination of trueness and precision (3.3.4) 

ISO 3534-2: (2006) [63] 

 

Bias Difference between the expectation of a test result or measurement 
result and a true value  

Notes: 

1 Bias is the total systematic error as contrasted to random error. 

There may be one or more systematic error components 

contributing to the bias. A larger systematic difference from the true 

value is reflected by a larger bias value. 

2 The bias of a measuring instrument is normally estimated by 

averaging the error of indication over an appropriate number of 

repeated measurements. The error of indication is the: “indication 

of a measuring instrument minus a true value of the corresponding 

input quantity”. 

3 In practice, the accepted reference value is substituted for the true 

value. 

ISO 3534-2: (2006) [63] 

 

Composite sample 

(also average and 

aggregate) 

Two or more increments/sub-samples mixed together in appropriate 
portions, either discretely or continuously (blended composite 
sample), from which the average value of a desired characteristic 
may be obtained. 

AMC (2005) [64] 

 

Duplicate sample 

Replicate sample 

One of the two (or more*) samples or sub-samples obtained 
separately at the same time by the same sampling procedure or sub-
sampling procedure. *for replicate sample 

Note: Each duplicate sample is obtained from a separate ‘sampling point’ 

within the ‘sampling location’. 

AMC (2005) [64] 
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Error of result Test result or measurement result minus the true value 

Notes: 

1 In practice, the accepted reference value is substituted for the true 

value. 

2 Error is the sum of random errors and systematic errors. 

Adapted from ISO 3534-2: (2006) [63] (Note omitted) 

 

Fitness for purpose The degree to which data produced by a measurement process 
enables a user to make technically and administratively correct 
decisions for a stated purpose. 

Note: As defined for analytical science. 

Thompson and Ramsey (1995) [16] 

 

Homogeneity, 

heterogeneity 

The degree to which a property or constituent is uniformly 
distributed throughout a quantity of material. 

Notes: 

1. A material may be homogeneous with respect to one analyte or 

property but heterogeneous with respect to another. 

2. The degree of heterogeneity (the opposite of homogeneity) is the 

determining factor of sampling error. 

IUPAC (1990) [9] 

 

Increment Individual portion of material collected by a single operation of a 
sampling device. 

IUPAC (1990) [9], AMC (2005) [64] 

 

Laboratory sample Sample as prepared for sending to the laboratory and intended for 
inspection or testing. 

ISO 78-2 (1999) [65] 

 

Measurand Quantity intended to be measured 

JCGM 200:2012 [43]  

Measurement 

Uncertainty 

see Uncertainty of measurement 
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Precision The closeness of agreement between independent test/measurement 
results obtained under stipulated conditions. 

Notes: 

1. Precision depends only on the distribution of random errors and does 

not relate to the true value or the specified value. 

2. The measure of precision is usually expressed in terms of imprecision 

and computed as a standard deviation of the test results or measurement 

results. Less precision is reflected by a larger standard deviation. 

3 Quantitative measures of precision depend critically on the stipulated 

conditions. Repeatability conditions and reproducibility conditions are 

particular sets of extreme stipulated conditions. 

ISO 3534-2: (2006) [63]  

 

Primary sample The collection of one or more increments or units initially taken 
from a population. 

Note: The term primary, in this case, does not refer to the quality of the 

sample, rather the fact that the sample was taken during the earliest stage 

of measurement. 

IUPAC (1990) [9], AMC (2005) [64] 

 

Random error of 

result 

Component of the error of result which, in the course of a number 
of test results or measurement results, for the same characteristic or 
quantity, varies in an unpredictable manner 

Note: It is not possible to correct for random error. 

ISO 3534-2: (2006) [63] 

 

Random sample  Sample selected by random sampling. 

ISO 3534-2: (2006) [63] (Note omitted) 

 

Random sampling; Sampling where a sample of n sampling units is taken from a 
population in such a way that all the possible combinations of n 

sampling units have a particular probability of being taken  

ISO 3534-2: (2006) [63] 

 

simple random 

sampling 

Sampling where a sample of n sampling units is taken from a 
population in such a way that all the possible combinations of n 

sampling units have the same probability of being taken  

Note 1: In bulk sampling, if the sampling unit is an increment, the 

positioning, delimitation and extraction of increments is such that 

all sampling units have an equal probability of being selected. 

ISO 3534-2: (2006) [63] 
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Reference sampling Characterisation of an area, using a single sampling device and a 
single laboratory, to a detail allowing the set-up of a distribution 
model in order to predict element concentrations, with known 
uncertainty, at any sampling point. 

IUPAC (2005) [66] 

 

Reference sampling 

target  

The analogue in sampling of a reference material or certified 
reference material (in chemical analysis). 

Note: A sampling target, one or more of whose element concentrations 

are well characterised in terms of spatial/time variability. The analogue 

in sampling of a reference material or a certified reference material (in 

chemical analysis) (notes adapted from IUPAC (2003) draft 

recommendations; originally defined in ISO Guide 30: 1992). 

Thompson and Ramsey (1995) [16] 

 

Representative 

sample 

Sample resulting from a sampling plan that can be expected to 
reflect adequately the properties of interest in the parent population. 

IUPAC (1990) [9], AMC (2005) [64] 

 

Sample A portion of material selected from a larger quantity of material. 

IUPAC (1990) [9], AMC (2005) [64] 

 

Sample preparation Set of operations necessary to transform an aggregated or bulk 
sample into a laboratory or test sample. 

EXAMPLE Reduction of particle size, mixing and dividing of a sample. 

Notes: 

1. For particulate materials, the completion of each operation of sample 

division defines the commencement of the next sample preparation stage.  

2. The sample preparation should not, as far as possible, modify the 

ability of the sample to represent the population from which it was taken. 

Adapted from ISO 3534-2: (2006) [63] (wording amended to 
include aggregated or bulk sample, and relevance to chemical 
measurement) 

Sample 

pre-treatment 

Collective noun for all procedures used for conditioning a sample to 
a defined state which allows subsequent examination or analysis or 
long-term storage 

Note 1: Sample pretreatment includes e.g. mixing, splitting, drying, 

crushing, stabilization. 

Adapted from ISO 11074:2015 [67] (removed restriction to soil 
samples)  
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Sample size Number of items or the quantity of material constituting a sample. 

ISO 11074:2015 [67], ISO 7002: A.40 (1986) [68] 

 

Sampler 

sampling personnel 

Person or a group of persons carrying out the sampling procedures 
at the sampling locality  

Note 1: Tools and other devices to obtain samples are sometimes 

also designated as “samplers”. In this case, write “sampling 

devices” or “sampling equipment”. 

ISO 11074:2015 [67] 

 

Sampling Act of drawing or constituting a sample. 

ISO 3534-2: (2006) [63]  

 

Sampling bias The part of the total measurement bias attributable to the sampling. 

AMC (2005) [64] 
 

Sampling location The place where sampling occurs within the sampling target. 
Perhaps used for location within which duplicate (or replicate) 
samples are taken at particular sampling points. 

 

Sampling plan Predetermined procedure for the selection, withdrawal, 
preservation, transportation and preparation of the portions to be 
removed from a population as a sample. 

IUPAC (1990) [9], AMC (2005) [64] 

 

Sampling point The place where sampling occurs within the sampling location. 
Perhaps used for specific point where duplicate (or replicate) 
sample taken, within a sampling location. 

Note: The accuracy at which a sampling point is located in space or time 

depends on the surveying method. Duplicate samples are taken from 

sampling points that reflect this accuracy. 

 

Sampling precision The part of the total measurement precision attributable to the 
sampling. 

AMC (2005) [64] 

 

Sampling 

procedure  

Operational requirements and/or instructions relating to the use of a 
particular sampling plan (i.e. the instructions for the implementation 
of the plan) 

AMC (2005) [64] 
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Sampling target Portion of material, at a particular time, that the sample is intended 
to represent. 

Notes: 

1. The sampling target should be defined prior to designing the sampling 

plan. 

2. The sampling target may be defined by Regulations (e.g. lot size). 

3. If the properties and characteristics (e.g. chemical composition) of the 

certain area or period are of interest and must be known then it can be 

considered a sampling target.  

AMC (2005) [64] 

 

Sampling 

uncertainty 

see Uncertainty from sampling 

 

Sub-sample Selected part of a sample. 

Note: The subsample can be selected by the same method as was used in 

selecting the original sample, but need not be so. 

ISO 3534-2: (2006) [63] (“subsample”) 

 

Sub-sampling 

(sample division) 

Process of selection of one or more sub-samples from a sample of a 
population. 

ISO 11074:2015 [67] 

 

Systematic error of 

result 

Component of the error of result which, in the course of a number 
of test results or measurement results, for the same characteristic or 
quantity, remains constant or varies in a predictable manner. 

Note: Systematic errors and their causes can be known or unknown. 

ISO 3534-2: (2006) [63] 

 

Systematic 

sampling 

Sampling according to a methodical plan. 

Adapted from ISO 3534-2: (2006) [63] (Notes omitted) 

 

Test portion Quantity of material, of proper size for measurement of the 
concentration or other property of interest, removed from the test 
sample. 

IUPAC (1990) [9], ISO 11074: 2015 [67], AMC (2005) [64] 

 

Test sample Sample, prepared from the laboratory sample, from which the test 
portions are removed for testing or analysis. 

IUPAC (1990) [9], ISO 11074:2015 [67], AMC (2005) [64] 
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Trueness Closeness of agreement between the expectation of a test result or a 
measurement result and a true value. 

Notes: 

1. The measure of trueness is usually expressed in terms of bias. 

2. Trueness has sometimes been referred to as ‘accuracy of the mean’. 

This usage is not recommended. 

3. In practice, the accepted reference value is substituted for the true 
value. 

ISO 3534-2: (2006) [63] 

 

Uncertainty 

(of measurement) 

Parameter, associated with the result of a measurement, that 
characterises the dispersion of the values that could reasonably be 
attributed to the measurand. 

Notes: 

1. The parameter may be, for example, a standard deviation (or a given 

multiple of it), or the half width of an interval having a stated level of 

confidence. 

2. Uncertainty of measurement comprises, in general, many components. 

Some of these components may be evaluated from the statistical 

distribution of the results of series of measurements and can be 

characterised by experimental standard deviations. The other 

components, which can also be characterised by standard deviations, are 

evaluated from assumed probability distributions based on experience or 

other information. 

3. It is understood that the result of the measurement is the best estimate 

of the value of the measurand, and that all components of uncertainty, 

including those arising from systematic effects, such as components 

associated with corrections and reference standards, contribute 

dispersion. 

4. (added) If measurand is defined in terms of the quantity within the 

sampling target, then uncertainty from sampling is included within 

uncertainty of measurement. 

JCGM 100 (2008) / ISO/IEC Guide 98-3:2008 [2]  

 

Uncertainty factor The factor by which the measured value is multiplied and divided in 
order to generate the limits of an uncertainty interval.  
 
Ramsey and Ellison (2015) [23].  
 

Uncertainty from 

sampling  

The part of the total measurement uncertainty attributable to 
sampling. 

Note. Also called sampling uncertainty 

IUPAC (2005) [66] 
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Appendix C: Useful statistical procedures 

C1. Estimating bias between two sampling methods, by using paired samples 

The paired-sample method is effected by collecting one sample, according to both of the 
sampling protocols under consideration, from each of a number ( 20n   preferably) of targets. 
The method is especially suitable for comparing a new candidate protocol against an 
established protocol in routine use, but is also generally applicable. For each method the 
sampling procedure has to be randomised in some fashion, for example by starting the 
collection of increments at a random position within the target and orientating the increment 
grid in a random direction. The samples collected are analysed under randomised repeatability 
conditions, so that analytical bias is cancelled out.  

The design, shown below in Figure C1.1, ensures a minimum of extra work at each target, so 
that the experiment can be executed at low cost without interrupting the flow of routine 
sampling. The result is also rugged, because it is derived from data collected from many 
typical but different targets. It therefore represents the average bias between the results of the 
two protocols, rather than the bias encountered in a single target, which may turn out to be 
atypical. 

Figure C1.1: Design of experiment to estimate the bias between two sampling methods 

 
Design of experiment to estimate the bias between two sampling methods A and B, by collecting paired samples 
at each target. 

 

The first stage of the examination of the results is to check whether the paired differences are 
dependent on the concentration of the analyte. This is particularly likely to happen if the 
concentration range encountered in successive targets is wide. A scatterplot provides a useful 
visual check. Where there is no dependence, the bias estimate is the mean of the signed paired 
differences and this mean can be tested for significant difference from zero in the usual 
fashion. In the example shown in Figure C1.2, there is no apparently significant dependence 
between the signed difference and the concentration, and the bias between the methods is not 
significantly different from zero at the 95% level of confidence by the two-sample t-test. 
Where there is a clear bias that is dependent on concentration, as in Figure C1.3, the bias 
should be expressed as a function of concentration. In the instance illustrated, there is 
evidence (established by the functional relationship method [59]) of a significant rotational 
bias with a trend expressed by the equation Result (B) = Result (A) ´ 1.2. 

.  
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Figure C1.2: No significant bias or trend 

 
Differences between results of two sampling protocols applied to 25 targets, as a function of the concentration. 
There is no significant bias and no suggestion of a dependence of bias on concentration. 

 

Figure C1.3: Significant bias and trend 

 
Differences between results of two sampling protocols applied to 33 targets, plotted as a function of the 
concentration. There is a significant bias (because 27/33 results are negative) and the absolute bias increases with 
increasing concentration. 
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C2. Further description of sampling errors from sampling theory 

C2.1 Weighting error (SWE) forms its own class. It is created, for example, if the lot 
(sampling target) consists of sub-lots of different sizes but the mean concentration is 
estimated as a simple mean, without taking the sizes of the sub-lots into account. The correct 
method is to calculate the weighted mean by using the sizes of the sub-lots as weights. In 
analysis of moving material, weighting error is generated if the flow-rate varies but is not 
taken into account in calculating the mean; in this case the flow-rates should be recorded 
simultaneously with sampling and used as weights in calculating the mean. Another option is 
to use a sampling device that cuts samples whose size is proportional to the flow-rate and use 
the sample sizes as weights in calculating the mean. It should be noted that if a composite 
sample is made from sub-samples then proportional sampling should be used; otherwise a 
weighting error is generated in the composite sample. 

C2.2 Grouping and segregation error (GSE) is the second error term related to short range 
errors. It is caused by the fact that the sample is normally not taken fragment by fragment, but 
as a group of fragments. If there is segregation in the material, this causes this type of error. 
This error is not normally estimated. Gy has shown, however, that if the sampling is correctly 
done GSE is smaller than, or at maximum equal to, the fundamental sampling error (FSE). 

C2.3 Point selection error (PSE). When the mean of a continuous object (e.g. process 
stream, river, polluted site, ...) is estimated by using discrete samples, the uncertainty of the 
mean depends on the sampling strategy, because the results are usually autocorrelated. This 
error is called point selection error (PSE) and it depends on the sampling strategy. Three basic 
strategies can be applied for picking the samples (see Figure C2.1): 

1) Random sampling: Time or location of the N sampling points are randomly 
distributed along the target.  

2) Stratified (random) sampling: The lot is first divided into N sub-lots and within each 
sub-lot the sampling point is randomly assigned. 

3) Systematic (stratified) sampling: All N samples are collected at equal distances 
(one-dimensional case) or on a fixed symmetric pattern (targets which from the 
sampling point of view have two or more dimensions). 

 

Estimation of the standard deviation of the mean of the lot 

Random sampling: ( ) p

L

s
s a

N
=  

Stratified sampling: ( ) strat
L

s
s a

N
=  

Systematic sampling: ( ) sys

L

s
s a

N
=  

sstrat and ssys are standard deviation estimates, where the autocorrelation has been taken into 
account.  

Note: These equations assume equal size increments. For other circumstances, see, for example  [69] 

Normally the order is sp > sstrat > ssys, except when in systematic sampling the sampling 
frequency is a multiple of process frequency. In this case the systematic sampling is the worst 
choice and the mean may be biased. 
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Figure C2.1: Sampling strategies 

 

Ten samples selected from the target by using random, stratified random and systematic stratified sample 
selection. 

 

 

Estimation of the PSE  

The distribution heterogeneity of a one-dimensional lot can be characterised by carrying out a 
variographic experiment, i.e. N samples are collected from the target by using systematic 
sample selection. N should be at least 30, preferably 60…100. Proportional cross-stream 
sampling should be used or if not possible (when large gas or liquid streams are sampled) the 
flow-rate should be recorded simultaneously with the sampling time. From these results the 
experimental heterogeneity hi can be calculated as the relative variation about the lot mean (or 
mean of the sampling target). When N samples of size Mi are collected and analysed (results 
are ai). Mi can be also the flow-rate, if proportional sampling cannot be carried out. 

i L i
i

L

a a M
h

a M

-
=  ( 1, 2, ,i N= … )  

where aL is the weighted mean of the lot: 

1
( )i i i

L i
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M N M
= = 

  

The standard deviation of the heterogeneity h is equal to the relative standard deviation of the 
lot or process, sp. 

To characterise the variability of the process an experimental variogram is calculated from the 
heterogeneities: 
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The variogram has to be integrated to estimate the PSE for different sampling strategies. Gy 
uses a robust numerical integration.  
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C3. Sources of software for calculations 

Classical analysis of variance (ANOVA) is available in most general spreadsheet software for 
one-way ANOVA, but the output does not usually include explicit values for all of the 
component variances. F-tests and other standard statistical tests for the normal distribution are 
also implemented in most spreadsheets.  

Programs for classical and robust statistical methods in general are available from RSC/AMC. 
Programs designed to support applications of the empirical approach described in this Guide, 
include RANOVA for both balanced and unbalanced designs, and RANOVA2 for the same, 
but also including the estimation of the uncertainty factor, and optionally for designs with 
more than two sample replicates. 
(http://www.rsc.org/Membership/Networking/InterestGroups/Analytical/AMC/Software/inde
x.asp).  

Outlier tests (e.g. Grubb’s or Dixon’s) are less generally available, as is software for the range 
method. The range method can, however, be implemented relatively simply using maximum 
and minimum functions in a spreadsheet. 

The range calculations (demonstrated in Section 7 of Appendix A3) are easily performed 
using a standard spreadsheet.  
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Appendix D: Alternative experimental designs for empirical uncertainty 

estimation 

1. Multi-level designs to estimate other component effects 

 
The general balanced design for the empirical estimation of uncertainty (Figure 2) includes 
the uncertainty from the physical sample preparation in with the ‘sample’ step. An alternative 
experimental design (Figure D.1) can be used to make a separate estimate of the uncertainty 
from this source (sprep). Two sub-samples from both of the two primary samples are prepared 
separately (grey boxes in Figure D.1). Duplicate test portions are taken from these sub-
samples so that the analytical contribution can also be estimated. The standard robust 
ANOVA can be used to separate all of these sources of variance (Figure A1.2, and Appendix 
C3), by selecting two different sub-sets of four measurements, shown in Figure D.1. Full 
details of the application of this design to food sampling are given elsewhere [22]. 
 

Figure D.1: Experimental design utilised for the estimation of uncertainty from sample 

preparation, as well as that from sampling and analysis 

 

* The upper section depicts the three-layered and unbalanced experimental design. The additional layer in this 
experimental design, required for the evaluation of sprep, is shown by the grey boxes. The lower section (shaded) 
shows the data groupings required for the application of ANOVA so as to provide estimates of ssamp, sprep  and 
sanal, i.e. the statistical design. Figure taken from [22] with permission of Royal Society of Chemistry. 
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2. Simplified and unbalanced designs, to reduce the cost of implementation 

Figure D.2: Two simplified alternatives to the full balanced design (Figure 2) that can be 

applied to reduce the cost of estimating the measurement uncertainty using the 

empirical approach: (a) the simplified balanced design, and (b) the unbalanced design  

 
Sampling Target

Analysis 1 Analysis 1

Sample 1 Sample 2

Measurement Uncertainty

 
 

Sampling Target

Analysis 1 Analysis 2 Analysis 1

Sample 1 Sample 2Sampling Uncertainty

Analytical Uncertainty  
 

The simplified design (Figure D.2a) has the same duplicated samples as in the full balanced 
design (Figure 2), but does not include and duplicated chemical analyses. The uncertainty 
estimated using this design gives the total measurement uncertainty, without any values for 
the components of the uncertainty from the sampling or the analysis. If these components are 
required, the analytical uncertainty can be estimated externally by the laboratory, and 
removed from the total uncertainty, to give a separate estimate of the sampling uncertainty, 
using Equation 1. The main advantage of this design is that the analytical cost of 
implementation is only half of that for the full balanced design, for the same number of 
duplicated samples. Alternatively, twice the number of duplicated samples can be taken, from 
twice the number of targets to increase their representativeness for the same expenditure on 
chemical analysis. 

The unbalanced design (Figure D.2b) is intermediate between these two designs, with only 
one analytical duplicate carried out on one of the duplicated samples. This has the advantage 
of giving estimates of the sampling and analytical components of the uncertainty, as well as 
the total measurement uncertainty (with the same caveats expressed as for the full balanced 
design in Section 9.4.2). The extra analytical costs are reduced by 33% compared with those 
for the fully balanced case. The degrees of freedom in this case are similar for both the 
analytical and sampling estimates of variance, which is more cost-effective than the extra 
degrees of freedom for the analytical uncertainty in the fully balanced case. 

Classical ANOVA can be applied to the output of both of these designs using many different 
spreadsheet software packages (Appendix C3). Robust ANOVA has been developed for both 
balanced and unbalanced designs [53]. Reference [20] also provides a worked example 
demonstrating the advantages of the unbalanced design over the balanced design.  

 

(a) 

(b) 
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Appendix E: Modifying sampling uncertainty using predictions from 

sampling theory 

Once uncertainty from sampling has been estimated, and if it is found not to be fit for 
purpose, there may be a need to modify this level of uncertainty. Predictions on how to 
achieve this modification can be made using sampling theory (Section 10.2). Several theories 
predict that the sampling variance is inversely proportional to the mass of the sample taken 
(e.g. Equation 6). This leads to the prediction that any required modification of uncertainty of 
sampling (from usamp1 to usamp2) can be calculated by changing the mass of the sample (from 
ms1 to ms2) using the relationship 

ms2 = (usamp1 / usamp2)
2 . ms1              ………………..(Equation E1) 

This approach can usefully be illustrated using the case study of nitrate in lettuce in Example 
A1. The sampling uncertainty was shown not to be fit for purpose (by the method in Section 
16.3), and the optimal uncertainty required was calculated to be lower by a factor of 
approximately 2. Equation E1 predicts that this should be achieved by increasing the sample 
mass by a factor of 4 (i.e. 22). The implementation of this prediction by increasing the number 
of increments from 10 heads to 40 heads of lettuce per batch, did achieve the predicted 
reduction in the sampling uncertainty in this case (i.e. by a factor of 1.80, which is not 
statistically significantly different from the predicted improvement of 2.0) [55]. Such 
successful predictions are not always achieved in practice. In a different example for the 
determination of moisture in butter, a predicted reduction of 3.7 in the usamp, was calculated to 
require an increase in ms by a factor of 14. In practice this increase in sample mass only 
produced an experimental improvement of 1.3. The inability of this model to predict the 
change in sampling uncertainty was probably due to the nature of the heterogeneity of the 
analytes in this particular material [70]. 
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